
Waves in Random and Complex Media
Vol. 15, No. 2, May 2005, 145–228

Nonlinear photonic crystals: IV. Nonlinear Schrödinger
equation regime

A. BABIN and A. FIGOTIN∗

Department of Mathematics, University of California at Irvine, CA 92697, USA

We study here the nonlinear Schrödinger (NLS) equation as the first term in a sequence of approxi-
mations for an electromagnetic (EM) wave propagating according to the nonlinear Maxwell (NLMs)
equations. The dielectric medium is assumed to be periodic, with a cubic nonlinearity, and with its
linear background possessing inversion symmetric dispersion relations. The medium is excited by
a current J producing an EM wave. The wave nonlinear evolution is analysed based on the modal
decomposition and an expansion of the exact solution to the NLM into an asymptotic series with
respect to three small parameters α, β and �. These parameters are introduced through the excitation
current J to scale, respectively (i) its amplitude and consequently the magnitude of the nonlinearity;
(ii) the range of wavevectors involved in its modal composition, with β−1 scaling its spatial extension;
(iii) its frequency bandwidth, with �−1 scaling its time extension. We develop a consistent theory of
approximations of increasing accuracy for the NLM with its first term governed by the NLS. We show
that such NLS regime is the medium response to an almost monochromatic excitation current J. The
developed approach not only provides rigorous estimates of the approximation accuracy of the NLM
with the NLS in terms of powers of α, β and �, but it also produces a new extended NLS (ENLS) pro-
viding better approximations. Remarkably, quantitative estimates show that properly tailored ENLS
can significantly improve the approximation accuracy of the NLM compared with the classical NLS
equation.

Notations and abbreviations

almost single-mode excitation—see (55)
bidirectional quadruplet—see (341)
directly excited modes—see (219), (58)
doublet—see (339)
ENLS extended nonlinear Schrödinger equation—see (100), (101) or (114) and section 1.4
Floquet–Bloch modal decomposition—see (146)
FM—frequency matching condition (223), frequency matched, see (227)
FNLR first nonlinear response—see (14), (176), (167), (174)
Fourier transform—see (425)
GVM group velocity matching condition—see (73), (222)
indirectly excited modes—see (220), (68), (69)
interaction quadruplet—see (72)
linear response—see (13)
NLM—nonlinear Maxwell equation, see (3)
NLS—nonlinear Schrödinger equation, see (36), (37) and (309)
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NLS regime—a situation when the evolution of an electromagnetic (EM) wave is governed
by the NLM equations and it can be approximated by an NLS or, may be, by a slightly
more general extended NLS

non-FM—non-frequency-matched
rectifying coordinates—see (281), (282)
susceptibility χ(3)

D —see (156)
susceptibility χ(3)—see (157)
unidirectional excitation—see (188)
απ = 3α(2π)2d

γ(ν)(η)—the Taylor polynomial of ωn̄ (k∗ + η) of order ν (200)
γ(2)(η)—the second-order Taylor polynomial of ωn̄ (k∗ + η) (201)
δ±
×,ζ —coefficients defined by (349), (345), (346)

ζ = ±1 or ζ = ±—band binary number, when used in indices is abbreviated to ζ = ±,
namely Vζ = V+ if ζ = +1, Vζ = V− if ζ = −1.

�ζ0,×—vectors defined by (345)
θ = �

β2 —inverse dispersion parameter, see (24)
ξ = (ξ1, . . . , ξd )—Fourier wavevector variable
ωn̄(k) = ζωn(k)—dispersion relation of the band (ζ, n), see (138)
ω′

n0
(k) = ∇kωn0 (k)—group velocity vector

ω′′
n0

(k∗) = ∇k∇kωn0 (k∗)—Hessian matrix of ωn0 (k) at k∗
G̃n̄(r, k)—the eigenfunction (eigenmode) corresponding to band index n̄ and quasimomen-

tum k, see (137), (141)
hζ (r), ζ = ±—initial data for the NLS (36), (37), (301)
F (1)

NL—see (162)
ĥζ ( 1

β
ξ), ζ = ±—Fourier transform of the initial data hζ (βr) for the NLS (189), (425)

In̄,ζ ′,ζ ′′,ζ ′′′ (k, τ )—interaction integral (211)
J—excitation current, see (35)
k = (k1, . . . , kd )—quasimomentum (wavevector) variable
k∗ = (k∗1, . . . , k∗d )—centre of the wavepacket, directly excited mode
�k = (k, k′, k′′, k′′′), �q = (q, q′, q′′, q′′′)—four-wave interaction wavevector, see (177),

(232)
�k∗,×,±—vectors defined by (346)
n̄ = (ζ, n)—band index, see (138)
n—band number
n0—band number of directly exited band
�n = (n, n′, n′′, n̄′′′)—four-wave interaction band index
�n0 = ((ζ, n), (ζ, n0), (ζ, n0), (−ζ, n0))—see (228)
↑n0, k∗↓ = {(1, n0, k∗), (−1, n0, −k∗)}—modal doublet, doublet, see (339)
�∇r = (∂/∂r1, ∂/∂r2, · · · , ∂/∂rd )
O(µ)—any quantity having the property that O(µ)/µ is bounded as µ → 0
O(|U(1)|)—magnitude of the FNLR, estimated by (290)
Q̆�n(�k)—modal susceptibility defined by (179)
Q̆�n,l̄(�k)—a component of the modal susceptibility, see (393)
�q = (q, q′, q′′, q′′′)—see (177), (232), (230)
�q � = (q, q, q, −q)—see (289)
q′′′(�q) = q − q′ − q′′—see (255)
�q0 = (q, q′, q′′, q − q′ − q′′)—see (255)
r = (r1, . . . , rd )—spatial variable
�q = (q, q′, q′′, q′′′)—see (232)
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�q � = (q′, q′′, q′′′)—see (261)
�q � = (q′ + q′′ + q′′′, q′, q′′, q′′′)—see (261)
U—solution of the NLM, see (4)
Ũ(k, r, t)—Floquet–Bloch transform of U(r, t), see (52)
Ũ(0)

n̄ —modal component of the linear response, see (165)
Ũ(1)

n̄ —modal component of the first nonlinear response, see (165)
Ũn̄(k, τ ) = ũn̄ (k, τ )e−iωn̄ (k)t —modal amplitudes, see (147), (150)
u(m), u(m1,m2)—coefficients of the power series expansions of u = u(α, β, �), see (160),

(174), (175)
ũ(1)

n̄ (k, τ )—modal amplitude depending on the slow time τ of the first nonlinear response
in written causal form, see (383), (394)

ũ(1,0)
n̄ (k, τ )—modal amplitude depending on the slow time τ of the first nonlinear response
in the time-harmonic approximation, see (176), (394)

V̂ (q)—Fourier transform of V (r), see (425)
V̂ζ (η, t) = v̂ζ (η, τ ) e−iζγ(ν)(ζη)t —amplitudes, see (332)
ψ0(τ )—slowly time cut off function, see (191)
ψ(τ ) = ∫ τ

0 ψ0(τ ) dτ1—auxiliary function with ψ0(τ ) satisfying (191), see also (311)
�—cutoff function in quasimomentum domain, see (190)
φ�n(�k) = ζωn(k)− ζ ′ωn′ (k′)− ζ ′′ωn′′ (k′′)− ζ ′′′ωn′′′ (k′′′)—four-wave interaction phase func-

tion, see (178)
�(ν)(�ζ0, β�q)—polynomial phase function (254)
ζ = ± binary index
�ζ = (ζ, ζ ′, ζ ′′, ζ ′′′)—four-wave interaction binary band index
�ζ0 = (ζ, ζ, ζ, −ζ )—see (234)
Z±—solution of the NLS or ENLS
Z∗—complex conjugate to Z

1. Introduction

The subject of this work is the accuracy of approximation of solutions to the nonlinear Maxwell
(NLM) equations for periodic dielectric media, i.e. photonic crystals (see [35]) by solutions to
the nonlinear Schrödinger (NLS) equations or, more broadly, by similar to the NLS equations.
The theory of nonlinear photonic crystals is treated in many books and papers, see for references
[3-4-14-30-32-59]. Both NLMs and NLSs are widely used in nonlinear optics, and there are
many derivations of the NLS in different situations and of different levels of rigour in the
physical literature. There is extensive literature devoted to studies of solutions to the NLS (see
[1–9] and references therein). If the evolution of an electromagnetic (EM) wave is governed
by the NLM and it can be approximated by an NLS or, may be, by a slightly more general
extended NLS (ENLS), we refer to it as NLS regime of propagation or just NLS regime.

The NLS describes a universal wave propagation regime occurring in a dispersive medium
with a dispersive relation ω(k) for its linear background. A derivation of the NLS equations
emphasizing its universal nature can be obtained by introducing an amplitude-dependent
dispersion relation (see [7, pp. 4–5; 10, pp. 50–51; 11]) of the form ω(k) + δ|Z |2 formally
implying the following NLS evolution:

∂t Z = −i[ω(−i �∇r)Z + δ|Z |2 Z ] (1)

More elaborate derivations of the NLS based on the NLM evolution make use of Fourier
expansions of the involved fields in infinite space [7, pp. 6, 7; 10, pp. 67–71, 83–104]. A
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similar analysis of the NLM equation for periodic dielectric media, i.e. photonic crystals, was
carried out based on Bloch expansions in [12]. In a number of mathematical studies the NLS
are derived based on equations other than the nonlinear Maxwell equations (see [13–16]).

Looking at different NLS derivations one can see that they are based on the following
fundamental assumptions.

� The nonlinear component of the wave is relatively small (the nonlinearity is weak).
� The wave is defined as a real-valued function.
� The wavevectors (quasimomenta) k involved in the wave composition are close to a certain

k∗.
� The time evolution of the wave envelope is slow compared to the typical carrier wave

frequency.
� The dispersion relation ω(k) = ω(k∗ + η) in the vicinity of k∗ is approximated by its

second-order Taylor polynomial γ(2)(η).
� The non-frequency-matched wave interactions (in particular the third harmonic generation)

are neglected.
� The frequency dependence of the susceptibility tensor is neglected and its value at k∗ is

used.

All the above factors are presented and to some degree are refined in our quantitative
approach to the approximation of solutions to the NLM by the NLS. The approach is based
on the framework described in [17–19], and its outline is as follows. A wave propagating in
the nonlinear media is generated by an excitation current J which is turned on at time t = 0
and is turned off at a later time t = t0. Hence for t > t0 there are no external currents and the
wave dynamics is determined entirely by the medium.

Suppose that the excitation current J has the form of a wavepacket with the carrier frequency
ω = ωn0 (k∗) where ωn(k) is the dispersion relation of the underlying linear medium with the
band number n and the wave numbers (quasimomenta) k, and n0 and k∗ are chosen. The
envelope amplitude of the excitation current J is supposed to vary slowly in space and time.
The current J and the resulting wave evolution are determined by three dimensionless small
parameters α, β and �. The first small parameter α scales the relative magnitude of the wave
nonlinear component and is related to the amplitude of the excitation current. The second
parameter β scales the range of the wavevectors k in a vicinity k∗ involved in the modal
composition J, and, consequently, β−1 scales the spatial extension of J. Finally, the parameter
� scales the frequency bandwidth of J, and, consequently, �−1 scales the time extension of J.
It turns out [17] that, in particular, � determines the slow time τ = �t related to the nonlinear
evolution.

Supposing that there is an excitation current J = J(α, �, β) as described above, we consider
the resulting wave U = U(α, �, β) which is a solution to the NLM. The NLM is a rather
complicated nonlinear evolution equation for electromagnetic vector fields varying in time
and space, and, naturally, we are interested in simpler scalar equations approximating the
NLM. It is well known that the NLS is one of such approximations and we are interested in
finding how the exact solutions U(α, �, β) of the NLM for small α, β and � for t > t0 are
approximated by solutions to an NLS. In our analysis we take into account all the modes
and all possible interactions as functions of the parameters α, β and �. Using relevant series
expansions rigorously justified in [20] we study the exact solution of the NLM for small but
still finite values of all three parameters α, β and �, and relate this solution to a solution
of a properly tailored NLS. In particular, we show that the scalar amplitudes of the Bloch
modes in the modal composition of the solution U can be approximated by amplitudes of
the Fourier modes in the Fourier composition of the solution Z of the relevant NLS with
high precision, providing also error estimates. Having a good control over all the steps of
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the approximation, we identify all additional terms which should be added to the classical
NLS to improve the approximation accuracy. Those more accurate equations are referred to
as extended NLS (ENLSs). We provide explicit expressions for those additional terms in the
ENLS which represent the dominant discrepancy between the exact NLM and its classical
NLS approximation. Consequently, the derived ENLSs are intimately related to the NLMs.
We provide here some analysis of the ENLS, for more information on the subject see [67] and
references therein.

One of interesting results of our quantitative analysis of the NLS regimes for the NLM is
their remarkable accuracy for small α, β and �. Namely, quantitative estimates of nonlinear
wave interactions show that a properly tailored ENLS can be far more accurate than the
classical NLS. In particular, for the classical NLS characterized by scaling α ∼ � ∼ β2 its
approximation accuracy of the NLM is proportional to β whereas properly tailored ENLSs
of third and fourth order have the approximation accuracy proportional, respectively, to
β2 and β3. An explanation of this phenomenon is based on an analysis of nonlinear wave
interactions [17–19]. Namely, we show in following sections that under the condition α ∼
� ∼ β2 the nonlinear wave interactions that lead to the NLS-like regimes and are described
by different ENLSs essentially exhaust all significant interactions up to the order β4 whereas
other nonlinear interactions under same conditions are of the order not greater than β5. In
other words, just by using ENLSs, which are only a little more complex than the classical NLS,
we can improve the total approximation accuracy of the NLM on time intervals of order β−2

from β to β3.
Complete analysis of the accuracy of the approximation of the NLM with the NLS is

laborious, and it is helpful to keep in mind the following key elements of that analysis.

� The dispersion relations ωn(k) of the underlying linear periodic medium, with n and k being
respectively the band number and the quasimomentum, are inversion symmetric, i.e.

ωn(−k) = ωn(k), n = 1, 2, . . . (2)

The inversion symmetry condition (2) is an important factor for NLS regimes in dielectric
media with cubic nonlinearities.

� We use modal decompositions of all involved fields with respect to the related Bloch modes
of the underlying linear medium. We consider only weakly nonlinear regimes for which, as
it turns out, the modal decomposition is instrumental to the analysis of the wave propagation.
The physical and mathematical significance of the spectral decomposition with respect to
the Bloch modes lies in the fact that they don’t exchange energy under the linear evolution.

� The NLS regime as a phenomenon of nonlinear wave interactions is characterized by a lack
of significant nonlinear interactions and energy exchanges between different spectral bands
and different quasimomenta. More exactly, if the wave is initially composed of eigenmodes
characterized by a single band number n0 and chosen quasimomentum ±k∗ then under the
NLS regime its modal composition remains confined to this band, and its quasimomenta
remain close to ±k∗ for long times with the nonlinear interactions essentially occurring
only between this narrow group of quasimomenta, whereas nonlinear interactions with all
other bands and quasimomenta are negligibly small.

� The NLS describes approximately the evolution of the modal coefficient of the solution of
the NLM generated by a real-valued almost time-harmonic excitation current composed of
eigenmodes with a single band number n0 and the quasimomentum k from a small vicinity of
a chosen point k∗. The NLS regime is a dielectric medium response to almost time-harmonic
excitations.

� The linear part of the NLS is determined by the second order (or higher order for the ENLS)
Taylor polynomial γ(2)(η) of ωn0 (k∗ + η) at k∗.
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� To relate the NLM and the NLS we introduce spatial and time scales through the excitation
currents in the NLM, and then study exact solutions and their asymptotic expansions with
respect to the parameters α, β and � assuming that they are small. After that we tailor the
parameters of the NLS or an ENLS so that their solutions have the same asymptotic expan-
sions up to a prescribed accuracy. The solutions comparison is carried out after excitation
currents are turned off. We do not make any a priori assumptions on the form of solutions to
the NLM, and our analysis of the solutions is not based on any specific ansatz. This allows
us not to impose strict functional dependence between the parameters α, β and �, and,
consequently, the significance of different terms in the NLS and ENLS and their relation
with the NLM can be studied for different ranges of parameters.

� The analysis of involved fields and equations is based on asymptotic series expansions of
interaction integrals with respect to small α, � and β and the fourth small parameter which
equals either �/β2 or β3/�. In other words, we consider two cases: �/β2 is small or β3/�

is small. The asymptotic expansions involving β and � stem from oscillatory interaction
integrals and they are not Taylor series expansions.

Following [17–19] we recast the classical NLMs in the following non-dimensional operator
form

∂t U(r, t) = −iMU(r, t) + αFNL(U(r, t)) − J; U(r, t) = J(r, t) = 0 for t ≤ 0 (3)

U(r, t) =
[

D(r, t)
B(r, t)

]
, MU(r, t) = i

[ ∇ × B(r, t)
−∇ × (ε−1(r)D(r, t))

]
(4)

J(r, t) = 4π

[
JD(r, t)
JB(r, t)

]
where FNL is a nonlinearity with a cubic principal part which may have a general tensorial
form, and ε(r) is the electric permittivity tensor depending on the three-dimensional spatial
variable r = (r1, r2, r3). We consider in this article the case of a lossles medium, i.e. ε(r) is a
Hermitian matrix satisfying

ε(r) = [ε(r)]∗, r = (r1, r2, r3) (5)

and our special interest is in the case when the permittivity tensor ε(r) is also a real symmetric
matrix, i.e.

ε(r) = {ε jm(r)}3
j,m=1 where all ε jm(r) = εmj (r) are real-valued (6)

Notice that the condition (6) implies the inversion symmetry property (2) as well as the
complex conjugation property of the eigenmodes (see equation (145)). Though almost all our
constructions assume only the inversion symmetry property (2), the dielectric media for which
the condition (6) is satisfied get our special attention since they can support real-valued waves
described very accurately by the classical NLS. Without the condition (6) but still under the
inversion symmetry condition (2), we obtain instead complex-valued waves described by a
system of two coupled NLSs (see section 1.4.5 below).

The cases whenε(r), J(r) and U(r) depend only on r1 or on r1, r2 are called, respectively, one-
dimensional and two-dimensional. All the fields D, B, JD and JB are assumed to be divergence
free. The dielectric permittivity ε(r) and the nonlinear polarization PNL(r) involved in FNL are
assumed to be periodic with respect to every ri , i = 1, 2, 3 with the period one for simplicity.
The nonlinearity FNL originates from the nonlinear polarization which can be written in the
following canonical form (see [21]):

PNL(r, t ; E(·)) = P(3)(r, t ; E(·)) + P(5)(r, t ; E(·)) + · · · (7)
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where P(m) is an m-homogeneous operator of the form

P(m)(r, t ; E(·)) =
∫ t

−∞
. . .

∫ t

−∞
R(m)(r; t − t1, . . . , t − tm)

...
m∏

j=1

E(r, t j )dt j (8)

with R(m), m = 3, 5, . . ., describing the medium response. The convergence of the series and
the reduction of the nonlinear Maxwell equations to the operator form (3) are discussed in
detail in [20]. We consider here the case when the series (7) has only odd order terms that is
typical for a medium with central symmetry allowing though the dependence on r which may
be not central symmetric. The parameter α in (3) evidently determines the relative magnitude
of the nonlinearity.

We assume that α � 1, consequently considering weakly nonlinear phenomena. Note that
if we rescale U and J in (3) by replacing U by ξU and J by ξJ with a scaling parameter ξ , we
obtain the same equation (3) with α replaced by ξ 2α.

Hence, taking small values for α is equivalent to taking small amplitudes for the excitation
current J and all three small parameters α, β, and � are ultimately introduced into the NLM
through the choice of the excitation current J.

As already mentioned, we assume that the excitation current J(r, t) is nonzero only in a
finite time interval [0, τ0/�], i.e.

J(r, t) = 0 if t ≤ 0 or t ≥ τ0

�
, where τ0 > 0 is a small constant (9)

and consider the NLS regime after the current is switched off, i.e. for t ≥ τ0/�. We also
assume that the time dependence of the modal coefficients of the currents J(r, t) is described
by almost time-harmonic functions, that is functions of the form:

a(t) = a�(t) = e−iω0tψ(�t) where ψ(τ ) = 0 for τ ≤ 0 and τ ≥ τ0 (10)

This type of time dependence corresponds to the well-known slowly-varying-amplitude ap-
proximation [22]. Note that since we prescribe this form to the excitation currents that are at
our disposal and not to the solutions, no approximation is made yet at this state. It turns out
that such currents in both linear and weakly nonlinear regimes generate waves that also have
almost time-harmonic amplitudes.

It was shown in [17] and [20] that the exact solution of (3) can be written in the form

U(r, t) = U(0)(r, t) + αU(1)(r, t) + O(α2), 0 ≤ t ≤ τ∗
�

, τ∗ � τ0 is a constant (11)

We recall that for any quantity ξ the notation O(ξ ) stands for any quantity such that

|O(ξ )| ≤ C |ξ |, where C is a constant (12)

In (11) the term U(0)(t) is the solution to the linear equation

∂t U(0) = −iMU(0) − J(0); U(0)(t) = 0 for t ≤ 0 (13)

obtained from (3) by setting there α = 0, and we refer to this term as the medium linear
response. The component U(1) (t) in (11), called the medium first nonlinear response (FNLR),
is a solution of the linear equation obtained by substitution of (11) into (3) with consequent
collection of terms proportional to α, namely

∂t U(1) = −iMU(1) + FNL(U(0)) − J(1); U(1)(t) = 0 for t ≤ 0 (14)

For the reader’s convenience we list basic quantities essential for the analysis of the NLM in
table 1.
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Table 1. The basic quantities needed for NLM analysis.

Basic quantities related to the NLM
EM wave, a solution to the NLM: six-component vector field U(r, t)
Excitation currents J(r, t)

Linear part of the NLM
First-order Hermitian differential operator with 1-periodic coefficients M
EM wave, a solution to the linear part U(0)(r, t)
Dispersion relations of M, generic 2π -periodic functions ωn(k)
Floquet-Bloch eigenmodes of M G̃ζ,n(r, k)
Modal coefficients of U(r, t) with respect to G̃ζ,n(r, k) Ũζ,n(k, t)
Phase of the linear wave U(0)(r, t) ζωn(k) τ

�

Nonlinear part of the NLM
Tensorial nonlinearity αFNL(U)
Cubic susceptibility tensor
χ(3)(r; ζ ′ωn′ (k′), ζ ′′ωn′′ (k′′), ζ ′′′ωn′′′ (k′′′))
Phase of cubic nonlinear interactions
[ζωn(k) − ζ ′ωn′ (k′) − ζ ′′ωn′′ (k′′) − ζ ′′′ωn′′′ (k′′′)] τ

�

1.1 Sketch of nonlinear evolution essentials

1.1.1 Magnitude, space and time scales. We study NLM–NLS approximations for the
following time range

τ0

�
≤ t ≤ τ∗

�
,
τ∗
�

≤ α0

α
, where α0, τ0, τ∗ are constants (15)

The constant α0 is related to the convergence of the series (11), and it is independent of the
small parameters � and β. Observe that the relations (15) imply that α ≤ � α0

τ∗
, that is α = O(�)

and in the case of a power dependence

α ∼ �κ0 , κ0 ≥ 1 (16)

Our primary focus is on an important particular case of (16) when

α ∼ �, κ0 = 1 (17)

and in section 7 we discuss the wave evolution for longer time intervals.
The nonlinear evolution governed by the NLM naturally involves two time scales re-

lated to t and τ = �t (for details see section 5.2). The time (fast time) t is just the “real”
time, whereas the slow time τ = �t describes a typical time scale for a noticeable nonlin-
ear evolution as in the rescaled NLS (22) below. In other words, 1/� is the time for which
a noticeable nonlinear evolution can occur. Recasting (15) in terms of the slow time τ we
obtain

τ0 ≤ τ ≤ τ∗, where τ0 < τ∗ are constants (18)

The lesser times t ≤ τ0/�, corresponding to transient regimes (see (9)), are beyond the scope
of our studies.

Now we give a preliminary sketch of the NLS which approximates the NLM in the one-
dimensional case d = 1. The NLS has the form

∂t Z = −iγ0 Z − γ1∂x Z + iγ2∂
2
x Z + iαq|Z |2 Z , Z (x, t)|t=0 = h(βx) (19)

where

γ0 = ωn0 (k∗), γ1 = ω′
n0

(k∗), γ2 = 1

2
ω′′

n0
(k∗) (20)
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Note that the spatial scale 1/β is explicitly introduced in the initial condition for Z in (19).
In the rescaled variables

τ = �t, y = βx, Z (x, t) = z(y, τ ) (21)

equation (19) turns into

∂τ z = −i
γ0

�
z − βγ1

�
∂yz + iγ2

β2

�
∂2

y z + i
α

�
q|z|2z, z(y, t)|τ=0 = h(y) (22)

Evidently, the coefficients of the NLS (22) explicitly depend on the small parameters α, � and
β whereas the initial condition does not depend on them. The terms (βγ1/�)∂yz and iγ0/�z ,
describing respectively the propagation of the wavepacket with the group velocity βγ1/� and
time oscillations at the frequency γ0/�, can be eliminated by a standard change of variables
yielding the following reduced classical NLS

∂τ z = iγ2
β2

�
∂2

y z + i
α

�
q|z|2z (23)

Let us look now at the term iγ2(β2/�)∂2
y z in (23), describing the linear dispersive effect,

and introduce the following parameter

θ = �

β2
(24)

which we refer to as the inverse dispersion parameter since it determines the magnitude of
the linear dispersion effects. It is well known that the ultimate magnitude of nonlinear effects
is essentially determined by an interplay between nonlinearity caused by sufficiently large
wave amplitudes and the linear wave dispersion causing a reduction of the wave amplitude.
In particular,

if γ2θ
−1 � 1 the dispersive effects are weaker

(25)
if γ2θ

−1 � 1 the dispersive effects are stronger

The significance of the inverse dispersion parameter θ is also supported by our analysis of the
error of the NLM–NLS approximation. The dispersive effects already show themselves when
θ is fixed and bounded uniformly in β and �. Indeed, in the linear case α = 0, the dispersion
causes a reduction of the wave amplitude approximately at the rate (1+γ2τ/θ )−1/2 as the slow
time τ increases. In contrast, in the nonlinear case α �= 0 the wave amplitude does not fall
with time as in the linear case under assumption that �/α is bounded, indicating a significant
nonlinear effect on the wave evolution. In particular, if

α ∼ � ∼ β2 (26)

the NLS (23) has soliton solutions with amplitudes that do not fall as τ increases. A qualitative
comparative picture of the wave amplitude evolutions for a linear medium versus a nonlinear
one is shown in figure 1, which indicates, in particular, that for for time ranges as in (18) and
under conditions (26) the wave evolution shows significant nonlinear effects.

Note that the effect of the nonlinearity is already significant when the fraction τ0/τ∗ < 1 in
(15) is a fixed number and it does not have to be infinitesimally small.

A closer look at the classical NLS equation (23) shows that if the small parameters vary so
that

β2

�
= θ−1 = constant,

α

�
= constant (27)
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Figure 1. A qualitative comparative picture of the wave amplitude evolution for a linear medium versus a medium
with cubic nonlinearity. If � ∼ α ∼ β2, the linear dispersion is exactly balanced by the nonlinearity in a relevant
soliton wave.

its form is essentially preserved. We refer to the relations (27) as classical NLS scaling. Notice
that the condition (26) is an equivalent form of the classical NLS scaling. In particular, from
the linear wave dispersion point of view the classical scaling is the marginal case when the
inverse dispersion parameter θ is neither infinitesimally small nor large but rather it is finite.
Existence of the solitons manifests the balance between dispersion and nonlinearity reached
at the classical NLS scaling (26).

As to further analysis of the interplay of the linear dispersion with the nonlinearity we
consider two cases: (i) θ → 0; (ii) θ ≥ θ0 > 0. The first case as θ → 0, corresponds to stronger
dispersion effects and it can be characterized more accurately by the inequality

‖ω′′
n0

(k∗)−1‖θ = ‖ω′′
n0

(k∗)−1‖ �

β2
� 1 (28)

where ω′′
n0

(k∗) in the multidimensional case d > 1 is the matrix of the second differential
of ωn0 (k) at k∗ and the symbol ‖ · ‖ stands for the matrix norm. Notice that in the case
d = 1 the expression ω′′

n0
(k∗) is just the second derivative and ‖ω′′

n0
(k∗)‖ is its absolute value,

implying ‖ω′′
n0

(k∗)−1‖ = ‖ω′′
n0

(k∗)‖−1. In view of (25), we refer to the case described by (28)
as dispersive case. In particular, the dispersive case takes place if

� ∼ βκ1 , κ1 > 2 (29)

The other case, θ ≥ θ0 > 0, occurs if

‖ω′′
n0

(k∗)‖
θ

= ‖ω′′
n0

(k∗)‖β2

�
� 1 or

‖ω′′
n0

(k∗)‖β2

�
∼ 1 (30)

Again, in view of (25), we refer to the case described by (30) as weakly dispersive. In particular,
the weakly dispersive case takes place if

� ∼ βκ1 , 2 ≥ κ1 > 0 (31)
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Notice that the classical NLS scaling is covered by the second alternative condition of the
weakly dispersive case (30) and (31), namely κ1 = 2 and

|ω′′
n0

(k∗)|
β2

∼ 1

�
(32)

Formula (32) determines the time scale on which the dispersive effects are already significant,
as one can see from figure 1. We will consider the weakly dispersive case in more detail since
it exhibits stronger nonlinear effects.

For both the dispersive and weakly dispersive cases we get the same set of NLSs or ENLSs,
but the properties of the equations are different in different ranges of the parameters. Math-
ematical techniques used to study them are different as well. Namely, in the dispersive case
of (28) we apply the stationary phase method. The weakly dispersive case (30) is technically
simpler and is studied based on the Taylor expansion of relevant oscillatory phases. Remark-
ably, in both cases the dynamics of the directly excited modes is explicitly expressed in terms
of a solution of the same NLS.

In addition to the above conditions, we assume that� is small enough to provide the condition

ωn0 (k∗)

�
� 1 (33)

which signifies the relevance of the frequency matching condition. We also assume the fol-
lowing condition

|ω′
n0

(k∗)|β
�

� 1 (34)

which allows use of the group velocity for the analysis of wave interactions. Note though that
the conditions (33) and (34) are not always necessary.

1.1.2 Relation between the NLM and the NLS. Observe that the excitation current J
determines uniquely the solution of the NLM (3) whereas the initial data h determines the
solution of the NLS (19). Consequently, if we want to select regimes of the NLM that are well
approximated by solutions of the NLS we have to (i) construct the NLS, in other words to
determine its coefficients, based on the NLM and (ii) describe the correspondence between J
and h. It turns out that the current J should be of the form

J(r, t) = J(0)(r, t) + αJ(1)(r, t), J( j)(r, t) = 0 if t ≤ 0 or t ≥ τ0

�
, j = 0, 1 (35)

where the principal part J(0) and the corrective part J(1) of the current J are properly selected
to produce a NLS-type regime (see sections 2.1 and 5.2 for details). Notice that the current
J substitutes for the initial data for the NLM and is based on the initial data of the NLS. As
was explained in [17], the introduction of the excitation current J is both mathematically and
physically a more suitable option for the NLM having nonlinear polarization of the form (8),
since a prescription of instantaneous initial data for t = 0 is inconsistent with the form of
the nonlinearity (8) which requires one to know the fields at all times. The standard classical
NLS though assumes the prescription of an instantaneous initial data at t = 0. We overcome
this difference by setting a proper form for the current J(r, t) including, in particular, its
composition of the form (35). To produce NLS-type regimes the current J has to possess two
properties. Firstly, it should be almost time-harmonic, as in (10) with a deviation from time-
harmonicity measured by a small parameter � which consequently determines the ratio of the
slow time and the fast time scales. Secondly, following the framework described in [17–20] we
choose the excitation current composed of Bloch modes from a single spectral band, described
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Table 2. The basic quantities needed for NLS analysis.

Basic quantities related to the NLS
Wave, a solution to the NLS: scalar function Zζ (r, t)
Initial data h(βr )

Linear part of the NLS
Second-order Hermitian differential operator γ(2)(−i∂r )
Wave, a solution to the linear part Z (0)

ζ (r, t)
Dispersion relations of γ(2)(−i �∇r), a polynomial γ(2)(η)
Fourier eigenmodes of γ(2)(−i �∇r): exponentials eir·η
Modal coefficients of Zζ (r, t) with respect to eir·η Ẑζ (η, t)
Phase of the linear wave Z (0)

ζ (r, t) γ(2)(η) τ
�

Nonlinear part of the NLS
Scalar nonlinearity αQζ |Z |2 Z
Phase of nonlinear interactions
[γ(2)(ζβη) − γ(2)(ζβη′) − γ(2)(ζβη′′) + γ(2)(−ζβη′′′)] τ

�

by an index n = n0, and with the quasimomenta k from a small β-vicinity |k ± k∗| = O(β) of
a fixed quasimomentum ±k∗ in the Brillouin zone. The reason for having two quasimomenta
±k∗ (a doublet) rather than just one k∗ is that it is the minimal set of quasimomenta producing
a real-valued U(r, t). In the case of the NLS the parameter β is introduced through its initial
data h±(βr) at t = 0. Then we provide an explicit construction of the excitation current J(r, t)
based on the prescribed initial data h±(βr) for the NLS. Notice that β−1 determines the length
scale for J(r, t) too. Thus, both parameters � and β are introduced into the NLM via the
excitation current J(r, t). The two relevant modal coefficients near ±k∗ in the composition of
the solution U(r, t) to the NLM are approximated by Fourier modes of two scalar functions
Z±(r, t). These two intimately related scalar functions Z±(r, t) satisfy two related NLSs. We
write now these equations in the simpler one-dimensional case d = 1, i.e. when the medium
coefficients and solutions of (3) depend only on the coordinate r1 = x and do not depend on
the remaining coordinates r2 and r3. The equations have the form

∂t Z+ = −iγ0 Z+ − γ1∂x Z+ + iγ2∂
2
x Z+ + απ Q+ Z− Z2

+
(36)

Z+(x, t)|t=0 = h+(βx), απ = 3α(2π )2,

∂t Z− = iγ0 Z− − γ1∂x Z− − iγ2∂
2
x Z− + απ Q− Z2

− Z+
(37)

Z−(x, t)|t=0 = h−(βx), h−(βx) = h∗
+(βx)

with the asterisk denoting the complex conjugation. In (36) and (37) the coefficients γ0, γ1, γ2

satisfy (20) and h+(x) is a smooth function decaying sufficiently fast as x → ∞. The function
h+(x) can be chosen as we please. The coefficients Q± in (36) and (37) are certain complex-
valued numbers related to the the third-order susceptibility tensor associated with the cubic
nonlinearity FNL(U). The relevant properties of the NLS are given in table: which can be
compound with table 1 for the NLM. We do not impose any conditions on the structure of the
cubic tensor in FNL(U), which affects only the values of the coefficients Q± in (36) and (37).
With no structural conditions imposed on the tensors related to the nonlinearity, the complex
coefficients Q± may be such that Q+ �= Q∗

−. In the latter case Z−(x, t) might be different from
Z∗

+(x, t). Though in the case when the nonlinearity maps real-valued fields into real-valued
and (6) holds we always have

Z−(x, t) = Z∗
+(x, t), Z− Z2

+ = |Z+|2 Z+ (38)

and the system (36) and (37) is effectively reduced to a single scalar equation (36):

∂t Z = −iγ0 Z − γ1∂x Z + iγ2∂
2
x Z + απ Q+|Z |2 Z , Z (x, t)|t=0 = h+(βx) (39)
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The two functions Z±(x, t) satisfying the NLSs (36) and (37) yield an approximation UZ (r, t)
to the exact solution U(r, t) of the NLM. An analysis of the approximate solution UZ (r, t)
leads to a natural partition of modes involved in its composition into two groups: ‘directly’
and ‘indirectly’ excited modes, and it suggests splitting of the approximate solution into two
parts

UZ (r, t) = Udir
Z (r, t) + Uind

Z (r, t) (40)

The directly excited modes that contribute to Udir
Z are the ones presented in the excitation

current J and excited through the linear mechanism, i.e. when α = 0, whereas indirectly
excited modes, which form Uind

Z , are excited only through the nonlinearity and, consequently,
for α = 0 their amplitudes are zero (see section 3 for details). The modal coefficients of the
indirectly excited modes are much smaller than those related to the directly excited modes,
therefore Uind

Z is much smaller than Udir
Z , i.e.∣∣Uind

Z

∣∣ = O(α)O
(|Udir

Z |) (41)

It turns out that high-precision approximations for the modal coefficients of the indirectly
excited modes are based only on the FNLR, and consequently are expressed in terms of the
excitation currents and do need the NLS. In contrast, approximations of the same accuracy for
directly excited modes are ultimately reduced to relevant NLSs which account for nonlinear
self-interactions of these modes.

The directly excited part of the approximate solution UZ has the following form in the space
domain:

Udir
Z (r, t) = G̃+,n0 (r, k∗)Z+(r, t) + G̃−,n0 (r, k∗)Z−(r, t) + βU1

Z ,n0
(r, t) + O(β2) (42)

with G̃ζ,n0 (r, k∗), ζ = ±, being Bloch eigenmodes of the linear Maxwell operator M. We
recall that

G̃ζ,n0 (r, k∗) = eik∗·rĜζ,n0 (r, k∗) where Ĝζ,n0 (r, k∗) is periodic in r (43)

The next order correction U1
Z (r, t) in this representation in the one-dimensional case when

r = x is given by the following formula (see section 5.5 for the general case of the space
dimensions 2 and 3)

U1
Z (r, t) = U1

Z+ (x, t) + U1
Z− (x, t) (44)

U1
Zζ

(x, t) = −ζ ieiζk∗·xβ−1∂x Zζ (x, t)∂k Ĝζ,n0 (x, k∗), ζ = ± (45)

This correction reflects finer effects of the periodicity of the medium and it is present even in the
linear case whenα = 0. The termsβ−1∂x Z±(x, t) in (45) are bounded for smallβ because, after
the rescaling (21), β−1∂x Z±(x, t) equals ∂yz±(y, t) where z±(y, t) solve equations of the form
(22). Note also that the approximate expression (42) is not an ansatz, it is a consequence of
the exact formula (58) written in section 1.2 in terms of the Floquet–Bloch transform. Note
that, according to (42) and (43), the quasimomentum k∗ describes the phase shift of the carrier
wave over the period cell.

The difference between the approximate solution UZ (r, t), based on the NLS equations
(36), (37) and the exact solution U(r, t) is called the approximation error. Using the modal
decomposition and analytic methods developed in [17–20] we proved the following estimate
for the approximation error:

U(r, t) − UZ (r, t) = O(β) + O(�) (46)

with the symbol O(η) defined by (12).
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The approximation error U(r, t) − UZ (r, t) can be reduced by adding certain corrective
terms to the NLSs (36) and (37). We call such equations with added corrective terms extended
NLSs (ENLSs) (see section 1.4 for details). The simplest ENLSs have corrective terms of the
form ∂3

x Z+, Z−∂x Z2
+ and Z2

+∂x Z− with calculable coefficients Q1,±, and they are as follows

∂t Zζ = −iζγ0 Zζ − γ1∂x Zζ + iζγ2∂
2
x Zζ + γ3∂

3
x Zζ + απ [Qζ Z2

ζ Z−ζ

+Q1,ζ Zζ Z−ζ ∂x Zζ + Q1,∗,ζ Z2
ζ ∂x Z−ζ ]

Zζ (x, t)|t=0 = hζ (βx), ζ = ± (47)

The coefficients Q1,±, Q1,∗,± in (47) take into account the dependence of the susceptibility
and Bloch eigenfunctions on the Bloch spectral variable k (the quasimomentum) which are
neglected in the standard NLSs (36) and (37). In the real-valued case we use (38) to reduce
the two equations (47) to one equation, which after the change of variables βx = y takes a
form similar to (22), i.e.

∂τ z = −i
γ0

�
z − βγ1

�
∂yz + β2

�

[
iγ2∂

2
y z + βγ3∂

3
y z

]
+ α

�
[iq0|z|2z + βq1|z|2∂yz + βq1,∗,+z2∂yz∗], z(y, t)|τ=0 = h(y) (48)

Table 3 lists additional terms of the order of β showing their relations to the NLM. If Z± are
solutions to the ENLS (47) then the approximate solution of the NLM given by (42) with UZ

based on (47) provides a better approximation of U than with UZ based on the standard NLSs
(36) and (37), i.e.

U(r, t) − UZ (r, t) = O(β2) + O(�) (49)

Estimates (49) and (46) show that the introduction of corrective terms into the ENLS improves
the accuracy of the approximation, namely the error term O(β) is replaced by a smaller
O(β2). Evidently that is a significant improvement when � ∼ β2. Such a refinement of the
approximation is possible due to the specific form of matching between solutions of the NLS
and the NLM which is described in the next section 1.2, see (58). In section 1.4 we consider
an ENLS having more corrective terms and yielding even better approximations.

Another way to construct approximate solutions of the NLM is by using not the differential
equations of the form of NLS or ENLS, but rather finite-difference lattice equations (see
section 9 for details). In the one-dimensional case the lattice counterpart of equation (39) is

∂t Z+(m) = −i(γ0 + γ2)Z+(m) − γ1

(
1

2
[Z+(m + 1) − Z+(m − 1)]

)
+ i

γ2

2
[Z+(m + 1) + Z+(m − 1)] + απ Q+|Z+(m)|2 Z+(m)

Z+(m, t)|t=0 = h+(βm), απ = 3α(2π)2, m = · · · − 1, 0, 1, 2, . . . (50)

Table 3. Additional terms in the third-order ENLS which
improve the accuracy of the NLM–NLS approximation.

Source in the NLM Term in the ENLS

Dispersion relation βγ3∂
3
y z

Susceptibility βq1|z|2∂y z + βq1,∗,+z2∂y z∗



Nonlinear photonic crystals. IV 159

Table 4. The origin of terms in the classical second-order NLS as an approximation of the NLM.

NLM characteristics Mechanism of correspondence NLS characteristics

Dispersion relation ωn0 (k) γ(2)(η) is Taylor polynomial of
ωn0 (k) for k = k∗ + η

Dispersion relation
γ(2)(η)

Nonlinearity FNL(U) and the
susceptibility χ (3)

The susceptibility χ (3) and
modes G̃ζ,n0 (r, k) at k = k∗
determine Q+

Coefficient Q+ at the
nonlinearity
|Z+|2 Z+

The lattice equation (50) is obtained by a direct approximation of the NLM, and it is not a
finite-difference approximation of the NLS (36). Technically, approximations of dispersion
relations by algebraic polynomials yield differential operators whereas approximations by
trigonometric polynomials yield finite-difference lattice operators. Instead of (42) a similar
formula holds with the same leading term (see equation (477–480) for details). The accu-
racy of the approximation of the NLM in terms of the lattice NLS is the same, it is given
by (46).

Summarizing, we single out the following factors essential for forming NLS-type regimes
of the NLM and for determining the coefficients of the relevant NLS or ENLS:

� dispersion relations ωn(k);
� band number n0, quasimomentum k∗ and the dispersion relation ωn0 (k) which determine,

in particular, the wave carrier frequency ωn0 (k∗);
� the susceptibility tensor χ (3);
� the Bloch mode G̃ζ,n0 (r, k∗) corresponding to the band n0 and quasimomentum k∗;
� the chosen order ν of the NLS which often equals 2.

Table 4 shows elements of the construction of the classical second-order NLS, for the order
ν = 2. After the value of ν is chosen and the NLS is constructed we move to the construction
of NLS-type solutions for the NLM based on the initial data h(βr). Such NLS-type solutions
are constructed by setting a proper expression for the excitation currents J in terms of the
initial data h(βr).

1.2 Basics of the modal analysis

Following [17–20] we study the NLMs in periodic media based on the Floquet–Bloch modal
decomposition. The importance and even necessity of such a decomposition is based on the
absence of the energy transfer between Bloch modes in the linear approximation, which is
instrumental for the construction of the perturbation theory of the nonlinear evolution. As
long as the amplitude of the wave component due to the nonlinearity does not exceed the
amplitude of its linear component, the Floquet–Bloch modal expansions continue to be an
excellent framework capturing well the nonlinear evolution. The Floquet-Bloch expansion of
the exact solution of (3) has the form

U(r, t) = 1

(2π )d

∑
n̄

∫
[−π,π]d

Ũn̄(k, t)G̃n̄(r, k) dk (51)

where G̃n̄(r, k) are the Bloch eigenfunctions corresponding to the eigenvalues ωn̄(k) of the
Maxwell operator M and k is the quasimomentum with values in the Brillouin zone [−π, π]d .
The scalar functions Ũn̄(k, t) in (51) are the modal coefficients of U(r, t) corresponding to
the mode (n̄, k). In the combined index n̄ = (ζ, n), the integer index n = 1, 2, . . . is the band
number and the binary index ζ = ±1 labels two conjugate eigenfunctions of the Maxwell
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operator M with opposite eigenvalues ωn̄(k) = ωζ,n(k) = ζωn(k). The field

Ũ(k, r, t) =
∑

n̄

Ũn̄(k, t)G̃n̄(r, k) =
∑
ζ=±1

∞∑
n=1

Ũζ,n(k, t)G̃ζ,n(r, k) (52)

which is the integrand of the integral in the right-hand side of (51), is called the Floquet-Bloch
transform of U(r, t), see [17] for details. By setting α = 0, J = 0 in (3) we obtain the linear
homogeneous Maxwell equation:

∂t U(r, t) = −iMU(r, t) (53)

Its general solution has the following Floquet–Bloch transform

Ũ(k, r, t) =
∑

n̄

ũn̄(k)e−iωn̄ (k)t G̃n̄(r, k) (54)

If we ask now what kind of current J(r, t) can produce a wave that evolves essentially
according to an NLS the answer is as follows. We set J(r, t), firstly, to be of the form (35)
and composed of eigenmodes with a single band number n0, and, secondly, we set the modal
form of its principal part J(0)(r, t) to be as follows

J̃
(0)
n0

(r, k, t) = j̃ (0)
+,n0

(k, τ )G̃+,n0 (r, k)e−iωn0 (k)t + j̃ (0)
−,n0

(k, τ )G̃−,n0 (r, k)eiωn0 (k)t

j̃ (0)
ζ,n0

(k, τ ) = −�β−dψ0(τ )�(k − ζk∗)ĥζ

(
1

β
(k − k∗)

)
, τ = �t, ζ = ± (55)

J̃(0)
n (r, k, t) = 0, n �= n0

We call such an excitation current almost single-mode excitation. Evidently, the current
J(0)(r, k, t) defined by (55) is an almost time-harmonic function of the time t as in (10) for ev-
ery k. Observe also that in (55) k∗ is a chosen quasimomentum in the Brillouin zone [−π, π ]d .
The currents of the above form are determined by the choice of the function β−d ĥ±(η/β),
which is the Fourier transform of the function h±(βr), which, in turn, corresponds to the initial
data of the NLS. Therefore, h±(βr)G̃±,n0 (r, k∗) is a proper substitute for the initial data for
the NLM. Note that for small β the spread of the function h(βr) is large and proportional to
1/β, whereas the spread of its Fourier transform β−d ĥ±(η/β) is small and proportional to β.
The cut-off function � in (55) is introduced to restrict ĥ±(η/β) from the entire space to the
Brillouin zone [−π, π ]d and its properties are listed in (190). The slowly varying function
�ψ0(�t) is set to be non-zero only for 0 ≤ τ = �t ≤ τ0. Its purpose is to provide a transi-
tion from the rest solution to a nonzero solution of the NLM, and also to introduce a finite,
proportional to � frequency bandwidth, and, consequently, the slow time scale τ = �t , into
the excitation current. We refer to currents and waves of the form similar to (55) as almost
single-mode waves. The concept of an almost single-mode wave is instrumental in studies on
nonlinear wave interactions and NLS regimes.

To explain the construction of an NLS corresponding to the NLM we introduce first an
abstract nonlinear equation for a two-component vector valued amplitude �V

∂t �V = −iL �V + αF (3)( �V ) − �JV (56)

where L is a linear differential operator with constant coefficients, F (3)( �V ) is a cubic nonlin-
earity with the simplest possible structure and JV = 0 when t < 0 and t > τ0/�. The vector �V
in (56) includes two components which correspond to two modes ±k∗ excited by a real-valued
almost single-mode current regime. Our goal is to construct L and F (3) and choose JV so that
the sum of the linear and the first nonlinear responses associated with (56) would approximate
well the directly excited modal coefficients Ũζ,n0 (k, t) when t > τ0/�. The correspondence
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Table 5. Simplified form of the relation between the NLS as it approximates the NLM.

NLM Mechanism of correspondence NLS

Solution U(r, t) Matching modal coefficients Solution Z (r, t)
Phase ωn(k∗ + η) τ

�
Taylor polynomial Phase γ(2)(η) τ

�

Modal coefficient Ũζ,n0 (k, t) Ũζ,n0 (k∗ + η, t) = Ẑζ (η, t) Fourier coefficient Ẑζ (η, t)
Excitation current J(r, t) J is of the form ψ(�t)Ψ(r, t), where ψ

is a cutoff function, and Ψ(r, t) is
determined by the initial data h(βr )

Initial data h(βr )

between NLS and NLM is shown in table 5. We rigorously show that equations providing
accurate approximations to the NLM are of the form (56), in particular, they are the classical
NLS or ENLS for higher order approximations. An analysis shows that for excitation currents
as in (55) only the modes close to ±k∗ interact nonlinearly with themselves strongly enough
to determine the nonlinear evolution, whereas all other nonlinear interactions are generically
negligible. Note that the difference between the NLS and NLM is obvious even when the non-
linearity is absent, since the NLM is an equation with variable coefficients for six-component
vector fields which includes only first-order spatial derivatives whereas the NLS has two
components (reducible to one by complex conjugation) with constant coefficients and with
second-order spatial derivatives.

The relation between the NLM and corresponding NLS is as follows. The coefficients of the
NLS can be explicitly written in terms of the Bloch dispersion relations, the eigenfunctions
and the cubic susceptibility. Then the approximate solution UZ (r, t) of the NLM is constructed
based on solutions Z±(r, t) to the NLS (36), (37) by formula (40) where the leading, directly
excited component does not include modes that are not present in the excitation current

Udir
Z ,n(r, t) = 0, n �= n0 (57)

and the component in the excited band is given by the following fundamental formula

Udir
Z ,n0

(r, t) = 1

(2π )d

∫
[−π,π ]d

�(η)

× [Ẑ+(η, t)G̃+,n0 (r, k∗ + η) + Ẑ−(η, t)G̃−,n0 (r, −k∗ + η)] dη (58)

where Ẑ±(k, t) is the Fourier transform of Z±(r, t), t ≥ τ0/�. The cut-off function �(η)
is introduced to select only η from a fixed small vicinity of k∗ in the Brillouin zone. The
components UZ ,n(r, t) with n �= n0 of UZ (r, t) are included in the indirectly excited part
Uind

Z (r, t); they are much smaller and are described in the end of this subsection. Formula (58)
shows that the dynamics of the solution of the Maxwell equation on time intervals of order
1/� is reduced to the dynamics of solutions to the NLS or ENLS. Formula (58) also shows
that the time evolution of the pair of the coefficients Ũζ,n0 (k, t), ζ = ±1, determined by the
almost single-mode excitations, is described by solutions Ẑ± to the NLS.

The relation between the modal coefficients of the approximate solution UZ (r, t) of the NLS
and the exact solution U(r, t) of the nonlinear Maxwell equation is represented by the formula

Ũζ,n0 (ζk∗ + η, t) = Ẑζ (η, t) + O(β) + O(�) (59)

Equality (59) holds when (15) is satisfied and |η| ≤ π0.
The coefficients of the NLS can be found as follows. Using the analytic expansion (11) of

the solution of (3) we obtain the following representation for the modal coefficients

Ũζ,n(k, t) = Ũ (0)
ζ,n(k, t) + αŨ (1)

ζ,n(k, t) + O(α2),
τ0

�
≤ t <

τ∗
�

(60)
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The first-order term of the power expansion (60) of Ũn̄(k, t) is given by the modal coefficient
Ũ (1)

n̄ (k, t) of the FNLR determined by (14). We also have a similar expansion for Zζ (r, t) and
its Fourier transform Ẑζ (η, t):

Ẑζ (η, t) = Ẑ (0)
ζ (η, t) + α Ẑ (1)

ζ (η, t) + O(α2), ζ = ± (61)

Then the coefficients to the NLS are determined from the following requirement. The FNLR of
the NLS must approximate the FNLR of the NLM with an error OFNLR so that for all initial
data hζ the following two identities hold:

Ẑ (0)
ζ (η, t) = Ũ (0)

ζ,n0
(ζk∗ + η, t) + O

(
β3

�

)
if |η| ≤ π0, 0 ≤ t <

τ∗
�

(62)

α Ẑ (1)
ζ (η, t) = αŨ (1)

ζ,n0
(ζk∗ + η, t) + OFNLR if |η| ≤ π0,

τ0

�
≤ t <

τ∗
�

(63)

For instance, if the NLS is second-order (that is given by (36) and (37)) OFNLR = O(β) +
O(�). If we use solutions of the fourth-order extended NLS that involve additional terms, the
error becomes smaller, in (63) OFNLR = O(β3) + O(β�) and in (62) O(β3/�) is replaced by
O(β5/�).

Note that since we use in (58) the exact solution Z± of the NLS and not Z (0)
ζ + αZ (1)

ζ , the
approximation error is much smaller than one may conclude looking only at (62) and (63)
(see section 7 for details).

All remaining, indirectly excited modes of the approximate solution are given in terms of
the FNLR:

Ũ ind
Z ,ζ,n(k, t) = Ũ (1)

ζ,n(k, t) (64)

and the approximation error

Ũn̄(k, t) − Ũ ind
Z ,n̄(k, t) = O(�α) when n �= n0 or |k − k∗| > π0 (65)

Note that indirectly excited modes are much smaller than directly excited, i.e.

Ũ ind
Z ,ζ,n(k, t) = O(�) (66)

compared with Ũ dir
Z ,n0

= O(1). The relative magnitude of the modes is also shown in table 6.
Note that (66) implies that the indirectly excited modes can be neglected in the cases (46)
and (49) but have to be taken into account when higher precision approximation is used. The
analysis in section 7 shows that though we determine the coefficients of the NLS based on the
FNLR of the NLM, using exact solution Zζ of the NLS in (58) allows us to obtain estimates

Table 6. Order of magnitude of excitation current J(r, t) before it vanishes for t ≤ τ0/�,
the field U(r, t), which is an exact solution to the NLM, and its components
during the time period τ0/� ≤ t ≤ τ∗/�. Notice that the indirectly excited

part of the FNLR is far smaller than the directly excited one.

Order of magnitude of fields and its components for τ0/� ≤ t ≤ τ∗/�
under the classical NLS scaling � ∼ α ∼ β2 in the one-dimensional case

Excitation current J(r, t) for t ≤ τ0/� � ∼ β2

Linear response U(0)(r, t) 1
Directly excited part of the FNLR αU(1)dir(r, t), α�−1 ∼ 1
Indirectly excited part of the FNLR αU(1)ind(r, t) α ∼ β2

Exact solution of the NLM U(r, t) 1
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(59). The indirectly excited part of the approximate solution is given by the formula

Uind
Z (r, t) =

∞∑
n=1

Uind
Z ,n(r, t) (67)

where

Uind
Z ,n(r, t) = α

(2π )d

∫
[−π,π ]d

[Ũ (1)
+,n(k∗ + η, t)G̃+,n(r, k∗ + η) + Ũ (1)

−,n(−k∗ + η, t)G̃−,n(r, −k∗ + η)] dη n �= n0 (68)

Uind
Z ,n0

(r, t) = α

(2π )d

∫
[−π,π ]d

(1 − �(η))

[Ũ (1)
+,n0

(k∗ + η, t)G̃+,n0 (r, k∗ + η) + Ũ (1)
−,n0

(−k∗ + η, t)G̃−,n0 (r, −k∗ + η)]dη (69)

with Ũ (1)
n̄ (k, t) being the modal coefficient of the solution U(1)(r, t) of the linear equation (14)

(for an explicit formula see (175), (176) and (166)).
In conclusion, the developed method allows one to find higher order approximations of the

solutions of the NLM by solutions of NLS-type equations with a rigorous control of errors
on time intervals for which the relations (15) hold. If additional information on the solution
of the NLS is available, in particular, if appropriate stability conditions are fulfilled, UZ (r, t)
approximates the exact solution U(r, t) well on longer time intervals (see section 7 for details).

1.3 Wave interactions and multimode NLS regimes

It is interesting and instructive to look at NLS regimes of nonlinear wave propagation in
periodic dielectric media in the context of nonlinear interactions between the eigenmodes of
the underlying linear medium. From that perspective an NLS regime can be characterized as
a regime of nonlinear mode interactions when, for a generic mode, its self-interaction (that is
interaction with the conjugate mode) significantly dominates the nonlinear interactions with
all other modes. A more accurate description of an NLS regime is based on finer estimations
of magnitudes of nonlinear interactions between different modes and their dependence on
values of the small parameters α, � and β. In turns out that, in the case of an NLS regime
when a generic mode (described by a quasimomentum k∗ and a band index n̄ = (ζ, n0))
is excited, it interacts significantly more strongly with modes from the same band n0 and
with quasimomenta located about k∗ than with all other modes. In addition to that, nonlinear
interactions between a mode ((ζ, n0), ζk∗) and its conjugate mode ((−ζ, n0), −ζk∗) are much
stronger than other mode interactions in this band. We call such a modal pair, occurring often
in our analysis, a doublet and denote it by

↑n0, k∗↓ = {(+, n0, k∗), (−, n0, −k∗)} = {(ζ, n0, ζk∗) : ζ = ±} (70)

In this article (excluding this subsection) we consider primarily almost single-mode current
excitations based on a single doublet ↑n0, k∗↓ formed by a mode ((+, n0), k∗) together with
its conjugate counterpart ((−, n0), −k∗) that would allow one to produce a real-valued field.
The dynamics of a doublet is described by the NLSs (36), (37) or with higher precision by
the ENLS (47). A more detailed investigation of nonlinear mode interactions would naturally
require the introduction of multimode current excitation involving small vicinities of several
doublets ↑nl , k∗l↓, l = 1, . . . , N , rather than just an almost single-mode excitation and leading
to groups of excited modes.
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The analysis below suggests a view on the NLS and ENLS as regimes of nonlinear wave
propagation when wave modal components admit a decomposition into essentially noninter-
acting groups. Consequently, the existence, conditions and accuracy of such a decomposition
(as well as the derivation of relevant simplified evolution equations of smaller modal groups)
become a subject of the theory of ENLSs. In other words, a ‘big picture’ characterizing an
NLS regime for the electromagnetic wave propagation is that the evolution of components of its
modal composition occurs essentially independently for groups of modes with separated car-
rier frequencies and quasimomenta whereas the interactions inside every single group occur
according to a rather universal scenario described by nonlinear Schrödinger-type equations.

The first and fundamental step in the analysis is to find and classify all the interactions
between the modal groups as well as with the rest of modes with estimations of their relative
magnitudes. We do this based on the quantitative theory of nonlinear mode interactions and,
in particular, with the help of selection rules for stronger interactions studied in [17–19]. The
essentials of the analysis are provided below.

1.3.1 Selection rules for stronger wave interactions and NLS regimes. To find the wave
decomposition into almost independent components we use the selection rules for stronger
interactions [17–19], which are as follows. Consider the modal coefficients Ũn̄(k, t) of the
wave governed by the NLM. Notice that if α = 0 the NLM turns into a linear equation
and, according to the classical spectral theory, the modal coefficients Ũn̄(k, t) for different
n̄ and k evolve independently one from another as in (54). For α �= 0 the cubic nonlinearity
introduces interactions between all the modes. In the case when the nonlinear term of the
electric polarization has the same spatial period as the underlying linear medium, the first
fundamental restriction on any quadruplet of interacting Bloch modes is given by the phase
matching condition

k = k′ + k′′ + k′′′ mod(2π ) (71)

where k is the quasimomentum of the mode which is affected by a triad of modes with the
quasimomenta k′, k′′, k′′′. We call the triad

((ζ ′, n′), k′), ((ζ ′′, n′′), k′′), ((ζ ′′′, n′′′), k′′′) (72)

the origin triad or origin modes of the interaction quadruplet and ((ζ, n), k) the end mode of
the quadruplet. The interaction quadruplet is completely defined by its origin triad and its end
mode.

If in the excitation current J of the form (35), (55) or of a more general form described in
[17–19], both the parameters α and � are small, and (34) is fulfilled (or, more precisely, (76)
holds) then stronger interacting modal quadruplets satisfy also the group velocity matching
condition

∇ωn̄′ (k′) = ∇ωn̄′′ (k′′) = ∇ωn̄′′′ (k′′′) (73)

Note that (73) is a constraint only on the origin triad of the quadruplet. The selection rule
(73) is the most important one, since if it is not fulfilled, the magnitude of the interaction is
estimated by O((�/β)κ ) with arbitrarily large κ , and, in view of (34), is not a strong interaction.

Finally, a modal quadruplet would have even stronger nonlinear interactions if, in addition
to the phase and group velocity matching, it satisfies the frequency matching condition

ωn̄′ (k′) + ωn̄′′ (k′′) + ωn̄′′′ (k′′′) = ωn̄(k). (74)

For many cases of interest there are modal quadruplets satisfying all three conditions of (71),
(73) and (74), [19]. In any case, the selection rules (71), (73) and (74) determine stronger



Nonlinear photonic crystals. IV 165

interacting quadruplets of modes with a detailed classification of generic mode interactions
provided in [17–19].

1.3.2 Multiple mode excitations and waves. Multimode excitations can be introduced as
follows. First we introduce the excitation current as a linear superposition of currents of the
form (55), namely

J =
N∑

l=1

Jl (75)

with every Jl being an almost single-mode excitation given by (35) and (55) with corresponding
k∗l and n0l , l = 1, . . . , N . Consequently, every Jl excites the corresponding doublet ↑nl , k∗l↓.
The modal components corresponding to the group Bl of modes with |k − k∗l | � β are
directly excited through the linear process, and the amplitudes of the directly excited modes
are considerably higher (of the order O(α−1) times) than the same for the indirectly excited
modes.

We assume in this subsection that the ratio�/β satisfies the condition (34), or, more precisely,
that

�

β
� max

l=1, ...,N
‖ω′

n0
(k∗l)‖, N ≥ 2 (76)

The condition (76) evidently requires the group velocities to be much larger than �/β (this
condition is not required in the single-mode case N = 1).

To determine finer features of the wave dynamics we pose the following questions.

� Which modes are excited through nonlinear interactions and what are the magnitudes of the
amplitudes of such modes?

� Which interactions determine the dynamics of the directly excited modes with a given
precision?

� What are the equations that determine the dynamics of the directly excited modes?
� What is the influence of indirectly excited modes on the directly excited modes?

The answers to the above questions depend on the choice of the quasimomenta k∗l ,
l = 1, . . . , N . It turns out that there are special combinations of modes having the strongest
interactions and playing the dominant role for nonlinear wave evolution. Such special combi-
nations involve exactly two (N = 2) special pairs of modes corresponding to the two values
of ϑ = ±1 for a two doublets ↑n0, k∗↓ϑ = ↑n0, ϑk∗↓. The values ±ωn(k∗) of the carrier
frequencies of the excitation and the quasimomenta ±k∗ are the same for both doublets. The
difference between the doublets is in the value of the group velocity ϑω′

n(k∗) which is opposite
for alternate doublets with ϑ = ±1. Such an excitation and the corresponding wave can be
interpreted as bidirectional (see also sections 1.4.6 and 5.4). In the case of a bidirectional exci-
tation the wave evolution can be approximated by a four-component system of NLS equations
which reduces to a two-component system (128) for the real-valued fields. Note that relevant
interactions between the four modes of the bidirectional quadruplet are determined by the
selection rules.

1.3.3 Mode-to-mode coupling and almost independence. It turns out that properly de-
fined different types of mode combinations evolve almost independently for long times and
high accuracy. In this section we introduce concepts and give a sketch of constructions needed
for establishing that almost independence and more.
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As in previous subsection we consider the current J = ∑N
l=1 Jl with currents Jl described

there, and denote by Bl of a set of directly excited modes by the current Jl .

Bl = {(ζ, n, k) : n = n0l , |k − ζk∗l | ≤ π0, ζ = + or ζ = −}, l = 1, . . . , N (77)

We consider also: (i) the complement BC
l for every Bl ; (ii) B as the union of all Bl ; (iii) the

complement BC, i.e.

B =
⋃

l=1,...,N

Bl , BC =
( ⋃

l=1,...,N

Bl

)C

(78)

Then we introduce a decomposition of the wave U governed by the NLM based on Bl , namely

U = UB1 + . . . + UBN + UBC (79)

where UBl is composed of modes from Bl . Using such a decomposition we recast NLM (3)
in the equivalent form of the following system of equations:

∂t UB1 = −iMUB1 + αFNL(UB1 + · · · + UBN + UBC ) |B1 −J1 (80)

· · ·
∂t UBN = −iMUBN + αFNL(UB1 + · · · + UBN + UBC ) |BN −JN (81)

∂t UBC = −iMUBC + αFNL(UB1 + · · · + UBN + UBC ) |BC (82)

UB1 = 0, . . . , UBN = 0; UBC = 0 for t ≤ 0 (83)

Now we define the almost independence of the components UBl for different l, l = 1, . . . , N .
If UB1 , . . . , UBN solving the system (80)–(83) were independent then we would be able to

drop in the right-hand side of the lth equation in (80)–(83) everything but the corresponding
UBl , and would get the following decoupled system:

∂t VB1 = −iMVB1 + αFNL(VB1 ) |B1 −J1; VB1 = 0 for t ≤ 0 (84)

· · ·
∂t VBN = −iMVBN + αFNL(VBN ) |BN −JN ; VBN = 0 for t ≤ 0 (85)

∂t VBC = −iMVBC + αFNL(VB1 + · · · + VBN ) |BC ; VBC = 0 for t ≤ 0 (86)

In other words, the lth equation in (84)–(85) for VBl is obtained from the lth equation for UBl

by dropping the UB j , j �= l and UBC in the nonlinear term. Obviously, the first N equations in
(84)–(86) can be solved independently, and the very last equation (86) is linear with respect
to VBC and can be easily solved too.

To find the nonlinear influence of modes from Bl onto themselves we take the lth equation
in (84)–(85) and set VBl in the nonlinear term FNL to be zero that leads to the following linear
equation

∂t V
(0)
Bl

= −iMV(0)
Bl

− Jl ; V(0)
Bl

= 0 for t ≤ 0 (87)

Now we can assess the level of independence or coupling of different UBl and UBC by
comparing them with the corresponding VBl and VBC , and similarly we can compare VBl with
V(0)

Bl
to assess the nonlinear influence of modes Bl onto themselves. Namely, we define the

mode-to-mode coupling as follows

mode-to-mode coupling BC
l → Bl ≡ UBl − VBl

(88)
nonlinear mode-to-mode coupling Bl → Bl ≡ VBl − V(0)

Bl
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Table 7. The magnitude of nonlinear mode-to-mode coupling for unidirectional
excitations in the one-dimensional case under classical NLS scaling � ∼ α ∼ β2.

Mode-to-mode coupling Order of the mode-to-mode coupling for τ0/� ≤ t ≤ τ∗/�
doubletl → doubletl α/� ∼ 1
doubletl → doubletCl � ∼ β2

doubletCl → doubletl β∞

We would like to emphasize that the definition of mode-to-mode coupling includes the direction
of influence via the corresponding evolution equations (80)–(83) and (84)–(86), and mode-to-
mode coupling is not symmetric. The analysis of nonlinear evolution requires one to introduce
such a direction of influence for nonlinearly interacting modes.

An additional analysis of the equations (84)–(86) also shows that VBl can be well approxi-
mated by a solution of a corresponding NLS or ENLS systems. In addition to that, estimates
similar to (65) for indirectly excited modes UBC in one-dimensional case d = 1 with the
classical NLS scaling � ∼ α ∼ β2 yield that

UBC − VBC = O(α2) = O(β4) (89)

Table 7 shows order of magnitude estimates of the mode-to-mode interactions involv-
ing unidirectional excitations and doublets (β∞ in this table means arbitrarily large power
of β).

When the excitations are bidirectional, quadruplets of modes are excited, and in this case
magnitudes of nonlinear interactions are as in table 8, which is similar to table 7.

The order of magnitude comparative estimates for the basic system (80)–(83) and its de-
coupled counterpart (84)–(86) provide additional facts on the interplay between dispersion
and nonlinearity. These estimates are collected in table 9, and they are based on the analysis
of the exact solution U(t) of the NLM involving instrumentally: (i) the analytic expansion
(11) for U(t); (ii) representation of the terms of that expansion (11) by oscillatory integrals;
(iii) computation of asymptotic approximations and series for these oscillatory integrals as
powers of the small parameters α, � and β. Observe that for a generic W, which can be
expanded as in (79), the value αFNL(W)|Bl differs noticeably from αFNL(WBl )|Bl and the dif-
ference is of order β2. In contrast, in the case when W is the exact solution U(t) of the NLM
the same difference for τ0/� ≤ t ≤ τ∗/� is of order β∞, which is much smaller. This effect
is due to destructive wave interference and wave dispersion for a wave governed exactly by
the NLM.

We end this subsection by the following qualitative conclusions on the interplay between
dispersive and nonlinear effects:

� dispersive effects balance nonlinear effects when modes interact inside one doublet leading
to NLS/ENLS-type dynamics;

� dispersive effects are dominant in interactions between different doublets, and nonlinear
effects are less pronounced.

Table 8. Magnitudes of nonlinear mode-to-mode coupling for bidirectional
excitations in the one-dimensional case under the classical NLS scaling � ∼ α ∼ β2.

Mode-to-mode coupling Order of the mode-to-mode coupling for τ0/� ≤ t ≤ τ∗/�
quadrupletl → quadrupletl α/� ∼ 1
quadrupletl → quadrupletCl α ∼ β2

quadrupletCl → quadrupletl β∞
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Table 9. The order of magnitude estimates collected here are based on the analysis of
the exact solution U(t) of the NLM involving instrumentally: (i) the analytic expansion

(11) for U(t); (ii) representation of the terms of that expansion (11) by oscillatory
integrals; (iii) computation of asymptotic approximations and series for these

oscillatory integrals as powers of the small parameters α, � and β.

Comparison of solutions to the basic system and its decoupled counterpart
under classical NLS scaling � ∼ α ∼ β2 for τ0/� ≤ t ≤ τ∗/�

Solutions UBl , VBl 1
Nonlinearity αFNL(U) |Bl , αFNL(VBl ) |Bl α

Difference of the values of nonlinearity on generic test functions α ∼ β2

αFNL(WB1 + · · · + WBN + WBC ) |Bl −αFNL(WBl ) |Bl
Difference of the values of nonlinearity applied to solutions β∞

αFNL(UB1 (t) + · · · + UBN (t) + UBC (t)) |Bl −αFNL(UBl (t)) |Bl
Difference of solutions UBl (t) − VBl (t) β∞

1.3.4 Spectral theory of nonlinear wave propagation. The above discussion suggests
that the theory of NLSs, ENLSs and systems of coupled ENLSs can be viewed as the spectral
theory of nonlinear wave propagation. The word spectral here refers to the property of certain
classes of waves to be decomposable into components evolving almost independently for
long times as described in the previous section. The almost independence, in turn, means
that the coupling between the components is small, and, more precisely, that the coupling
terms in the relevant exact evolution equations can be classified by powers αl0�l1βl2 . We recall
that the small parameters α, � and β introduced in previous sections characterize, respectively,
the relative magnitude of nonlinearity, the time and the space scales related to the nonlinear
evolutions. The parameter α characterizes the magnitude of the nonlinearity. The next is the
small parameter �, which characterizes the degree of time-harmonicity of the excitation wave.
And, finally, the third small parameter β characterizes the linear dimensions of a small vicinity
of a single or several quasimomenta k∗ j involved in the modal decomposition of the wave.
When accounting for different magnitudes of mode interactions as powers αl0�l1βl2 we come
to either the classical NLS, ENLS or a system of ENLSs. The so obtained equations take into
account at the prescribed precision level all relevant nonlinear interactions and with that level
of accuracy describe the nonlinear wave evolution. In such a construction, linear spectral
theory forms a fundamental basis for the nonlinear one. It yields a system of eigenmodes that
evolve independently and set a framework for nonlinear spectral theory.

In this article we focus primarily at almost single-mode excitation currents and only sketch
the case of multimode excitations. More detailed studies of waves generated by multimode
excitation currents and, in particular, the derivation of the corresponding systems of ENLSs
accounting for smaller coupling between essentially noninteracting groups of modes are nat-
urally to be conducted as the next step.

The essence of the above discussion on nonlinear evolution and wave interactions can be
formulated in the form of the following principle of approximate superposition. Let us call a
solution to the NLM a multiple-mode solution if it corresponds to an excitation current which
is generic and is a sum of almost time-harmonic single-mode excitations. Then being given a
level of accuracy and any multiple-mode solution we can decompose it into the sum of certain
single-mode solutions each of which is governed by the NLS or ENLS (can be a system) with
a prescribed accuracy.

More accurate formulation of the principle of approximate superposition is as follows. Let
Ul be a solution of the NLM corresponding to an almost single-mode excitation Jl around k∗l ,
i.e.

∂t Ul = −iMUl + αFNL(Ul) − Jl , l = 1, . . . , N (90)
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Then for a generic collection of k∗l the multiple-mode solution U corresponding to sum of Jl

satisfies

∂t U = −iMU + αFNL(U) − J, J =
N∑

l=1

Jl (91)

and on the time interval (15)

U =
N∑

l=1

Ul + O

(
�

β

)N1

, where N1 can be arbitrarily large (92)

Observe a remarkable superaccuracy of the superposition formula in (92). For the typical
scaling � ∼ α ∼ βκ1 , κ1 ≥ 2, as in (29), the approximation error is smaller than any power of
α whereas the nonlinearity itself is of order α. The explanation of the superaccuracy follows
from an analysis of nonlinear wave interactions.

Notice that the principle of approximate superposition has its natural limitations, and the
condition (nl1 , k∗l1 ) �= (nl1 , k∗l2 ) for l1 �= l2 in (75) is absolutely instrumental. For instance,
though evidently 2Jl = Jl + Jl , the solution for 2Jl is evidently not 2Ul = Ul + Ul since Ul

is a solution of a nonlinear equation which is well-approximated by the NLS. So, to have (92)
with arbitrary large N1 the proper genericity condition has to include

∇ωn̄l2
(k∗l2 ) �= ∇ωn̄l1

(k∗l1 ) for l2 �= l1 (93)

1.4 Extended nonlinear Schrödinger equations

As discussed above, the NLS describes the evolution of a doublet of directly excited modes of
the NLM. More accurate higher order approximations of solutions to the NLM can be obtained
by constructing an extended NLS (ENLS) instead of the classical NLS. Extended NLSs are
widely used in nonlinear optics (see [23–26]). The corrective terms in the ENLS originate from
several sources, resulting in relatively smaller alterations of solutions compared to the basic
(classical) NLS. Note that the nonlinearity α|Z |2 Z in the classical NLS gives an alteration of
the linear Schrödinger equation of order O(α) and the error of approximation (when time t is
O(1)) of the NLM by a linear Schrödinger equation is O(α) too. One though has to take into
account that an O(α) alteration of the equation leads on time intervals of length O(�−1), which
we consider here, to alterations of solutions of order O(α�−1). In the case of classical NLS
scaling (26) O(α) = O(�) = O(β2) and solutions of the classical NLS give approximations
of solutions of the NLM with the error O(β). We consider in this article two types of the
ENLS: third and fourth order. Using a third-order ENLS improves the error estimate in the
case of classical NLS scaling (26) from O(β) to O(β2) and solutions of fourth-order ENLSs
approximate solutions of the NLM with accuracy O(β3).

Here is a complete list of all sources of the additional corrective terms that are required
to be added to the NLS to improve the accuracy of approximation with estimations of their
magnitude:

� cubic and the fourth-order polynomial approximations of the dispersion relation ωn0 (k) at
k∗ with the corrective terms magnitude O(β3) and O(β4), respectively;

� the first-order approximation of the cubic susceptibility accounting for its frequency depen-
dence (see section 6.3) with the corrective terms magnitude O(α�);

� polynomial approximation of the modal susceptibility Q̆�n(�k) in (179) at �k∗ with the corrective
terms magnitude O(αβ) or O(αβ2);
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� non-frequency-matched interactions between waves propagating in opposite directions (see
section 5.4) with the correction term magnitude O(α�);

� fifth-order nonlinear terms in the expansion of the nonlinearity in the NLM with the correc-
tive terms magnitude O(α2);

� the interband interaction terms with the corrective terms magnitude O(α�).

If all the corrective terms from the above list are taken into account then the accuracy of
the approximation by the fourth-order ENLS of the NLM is estimated by:

U − UZ = O(β3) + O(β�) + O(�2) (94)

In the case of classical NLS scaling � ∼ α ∼ β2 and a time interval length O(�−1), we find
that the neglected terms in the right-hand side of (94) correspond to alterations of the equations
of order O(�β3) = O(β5), whereas the classical NLS nonlinearity itself is of order β2 and the
introduced above additional corrective terms in ENLS are of order β3 or β4.

Let us introduce the following short notation for the linear Schrödinger operator of the
order ν:

L[ν]
+ Z = γ(ν)[−i �∇r]Z , L[ν]

− Z = −γ(ν)[i �∇r]Z (95)

where the so-called symbol (characteristic polynomial) γ(ν)(η) of the differential operator
γ(ν)[−i �∇r] is the Taylor polynomial of order ν of the dispersion relation ωn0 (k) at k = k∗. For
instance, for ν = 2

γ(2)(η) = ωn0 (k∗) + ω′
n0

(k∗)(η) + 1

2
ω′′

n0
(k∗)(η2) (96)

We always consider the situation where the FNLR is applicable, that is the time interval
satisfies (15), i.e.

τ0

�
≤ t ≤ τ∗

�
where

τ0

τ∗
< 1 isfixed (97)

We consider the cases ν = 2, ν = 3 and ν = 4. The resulting ENLSs and the approximation
error estimates are the same in both the dispersive and weakly dispersive cases (28) and (30).
In the error estimates we assume that (29) or (31) holds with some fixed value of κ1. Often
from general error estimates that include the three parameters α, β, � we deduce in the case
of the classical NLS a scaling (26) simpler estimates in terms of a single parameter β as a
consequence.

For illustration we give the form of a typical ENLS of order ν (for simplicity skipping some
corrective terms)

∂t Z+ = −iL[ν]
+ Z+ + απ p[ν−2]

+ [−i �∇r](Z2
+ Z−), απ = 3α(2π )2d (98)

∂t Z− = −iL[ν]
− Z− + απ p[ν−2]

− [−i �∇r](Z2
− Z+) (99)

where the nonlinearity p[ν−2]
+ [−i �∇r](Z2

+ Z−) includes spatial derivatives of Z+ and Z− of
order up to ν − 2.

Note that if (i) the excitation currents are real-valued, (ii) equation (6) holds and (iii) the
polarization tensors have real coefficients, then the equation for Z+ is obtained by the complex
conjugation of the equation for Z− and Z− = Z∗

+. Moreover, we can use (38) and reduce the
system for two equations to one equation for Z+.

The ENLSs which we describe below are universal; they do not depend on the a relation
between �, α and β, in particular on the exponents κ0 in (16) and κ1 in (29) or (31). From the
universal ENLS one may deduce a reduced ENLS for a particular scaling (see section 1.4.7
for examples of such reduction). The reduced ENLS may depend on the choice of κ0 and κ1.
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Remark When we discuss the magnitude of the terms in the NLS, one has to take into account
that we study the NLM and NLS on intervals of time t of order 1/�. Integration of the equation
with respect to t leads to a factor 1/� in the contribution of the corresponding terms to the
exact solution of the NLS. This also follows from the fact that the change of variables t = τ/�

(which introduces slow time τ of order one) leads to multiplication of the right-hand sides of
(98) and (99) by 1/�. For example, in the case of the classical NLS scaling addition of the
NLS nonlinearity which has order O(α) leads at times t ∼ 1/� to a change of a solution of the
linear equation of order O(α/�) which is of order one as can be seen from (22). In our error
estimates, for example (94), the effects of integration are already taken into account. Therefore,
variation of solutions is 1/� times greater than the corresponding variation of coefficients. In
this section we will systematically use this correspondence without further reference; we give
some details only when it is necessary, as in (129). To simplify the discussion of the magnitude
of the nonlinear terms we everywhere in this section assume that (17) holds, namely α ∼ �.
Sometimes, for a further simplification, we consider classical NLS scaling, that is α ∼ �,
� ∼ β2. �

1.4.1 The second-order ENLS. If the order of the linear part ν = 2 then the ENLSs take
the form

∂t Z+ = −iL[2]
+ Z+ + απ p[0]

+ [−i �∇r](Z2
+ Z−), απ = 3α(2π )2d (100)

∂t Z− = −iL[2]
− Z− + απ p[0]

− [−i �∇r](Z2
− Z+) (101)

with the initial conditions

Z+(r, t)|t=0 = h+(βr), Z−(r, t) |t=0= h−(βr) (102)

where

h−(βr) = h∗
+(βr) (103)

The linear operator

L[ν]
ζ = ζγ(ν)[−iζ �∇r], ν = 2, ζ = ± (104)

is the second-order linear differential operator with constant coefficients given by formulas
involving ωn0 (k) and its derivatives at k∗ which are similar to (20) (see equation (297) for
general case and details). The action of p[0]

± = p[σ ]
± with σ = 0 is just the multiplication by a

constant, that is

p[0]
+ [−i �∇r](Z2

+ Z−) = Q± Z2
+ Z− (105)

where Q± is determined by the modal susceptibility (179) (see equation (264) for details)
and in this case we obtain the classical NLS (36). The order of approximation is given by the
formula

U − UZ = O(β) + O(�) (106)

Remark When together with fulfilment of (103) and (6) the nonlinearity in NLM is real-
valued for real-valued vector fields, we have

Q− = Q∗
+, Z−(r, t) = Z∗

+(r, t) (107)

Therefore we can use (38) and (100), and (101) is equivalent to the NLS in its classical form:

∂t Z+ = −iL[2]
+ Z+ + απ Q+|Z+|2 Z+ (108)
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1.4.2 The third-order ENLS. For the classical NLS scaling (26) the leading term in the
error estimate (106) is O(β) compared with O(�) = O(β2). To reduce O(β) to O(β2) and
thus get a higher accuracy of approximation we take ν = 3 and obtain the following system
of two third-order equations similar to (100), (101):

∂t Zζ + iL[3]
ζ Zζ = απ p[1]

ζ [−i �∇r]
(
Z2

ζ Z−ζ

)
, ζ = ± (109)

with the initial conditions (102) (see also [22, pp. 44–45, 27–34], where similar equations
are studied). Now γ(3)(−i∂1) in (104) is the third-order linear operator with the symbol which
is the third-degree Taylor polynomial of the dispersion relation ωn0 (k) at k∗. For σ = 1 the
polynomial

p[1]
± (η) = p[0]

± (η) + p1,±(η) (110)

originates from the Taylor approximation of order one for the modal susceptibility Q̆�n(�k) in
(179) at the point �k∗ determined by k∗. The zero-order term is given by (105). The action of
p1,±[−i �∇r] on the product Z2

+ Z− is defined by the formula

p1,+[−i �∇r](Z2
+ Z−) = −iZ+ Z−(a11,+ + a12,+) · ∇r(Z+) − iZ2

+a13,+ · ∇r(Z−)

+ Q+ Z2
+ Z− (111)

where a11,+, a12,+ and a13,+ are constant vectors explicitly given in terms of the gradient
of Q̆�n at �k∗ by formula (267) which also defines p[1]

− [−i∇r]. Note that the order of the fac-
tors Z+ and Z− in the notation p[1]

+ [−i �∇r](Z2
+ Z−) is important, see (435). The corrective

terms απ p[1]
+ [−i �∇r](Z2

+ Z−) can be considered as nonlinear corrections to the linear oper-
ator γ(3)[−i �∇r]. Note that in the case of real-valued fields using (38) the first-order part of
p[1]

+ [−i �∇r](Z2
+ Z−) can be rewritten in the following commonly used form (see [22] pp. 44–45):

−iZ+ Z−(a11,+ + a12,+) · �∇r(Z+) − iZ2
+a13,+ · �∇r(Z−)

= −i|Z+|2(a11,+ + a12,+ − a13,+) · �∇r(Z+) − iZ+a13,+ · �∇r(|Z+|2)

The error of approximation in the case ν = 3 is

U − UZ = O(β2) + O(�) (112)

The improvement O(β2) in (112) compared with O(β) in (106) is obtained by a taking the
variability of Q̆�n(�k) into account and by a more precise approximation of ωn0 (k).

In particular, for the classical NLS scaling (26) the error in (112) is O(β2). According to
(102)

�∇r Z+ = O(β), �∇2
r Zζ = O(β2), �∇3

r Z+ = O(β3) (113)

Therefore the third-order terms added in L[3]
+ and the first-order terms added in (111) to the

ENLS yield corrections of solutions of order �−1 O(β3) = O(β) and α�−1 O(β) = O(β); they
are generically nonzero and much larger than the approximation error O(β2). Note that if the
terms of order O(β3) in (109) were thrown away, we would arrive at the classical second-order
NLS. Therefore, the difference of solutions of the NLM and the classical NLS really is of order
O(β) and is represented by the additional terms in the ENLS (109). Hence, the corrections
introduced into the NLSs capture the actual properties of solutions of the NLM and they are
necessary if one wants to approximate the solutions to the NLM with a higher accuracy than
the classical NLS.
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1.4.3 The fourth-order ENLS. From the very form of the error estimate (112), one can
see that to improve the error estimate we have to make smaller each one of the two terms
O(β2) and O(�), which are of the same order under the classical NLS scaling � ∼ α ∼ β2

(and may be of different magnitude in a more general situation). To reduce O(β2) we have
to approximate better the modal susceptibility Q̆�n(�k) about k = k∗, and to this end we use
the second-degree Taylor polynomial of Q̆�n instead of the first-degree one, that yields the
second-order linear operator p[2]

ζ [−i �∇r] (see (262) for an explicit formula). To reduce O(�)
we have to take into account finer effects related to the convolution integrals in the nonlinearity,
which, in turn, are reflected in the frequency dependence of the susceptibility. Since α ∼ �,
the fifth-rank nonlinearity with the coefficient α2 in the expansion of the nonlinearity in the
NLM also contributes to this term and to make it smaller we have to take the quintic term into
account.

1.4.4 Corrections related to the frequency dependence of the susceptibility. To take
into account the first-order corrections due to the frequency dependence of the susceptibility
tensor (discussed in detail in section 6), some terms involving time derivatives must be added
to the ENLS (109) yielding the following ENLSs(

∂t + iL[4]
ζ

)
Zζ = απ p[2]

ζ [−i �∇r]
(
Z2

ζ Z−ζ

) − απδ1,ζ Zζ Z−ζ

×(
∂t + iL[4]

ζ

)
Zζ − απδ2,ζ Z2

ζ

(
∂t + iL[4]

−ζ

)
Z−ζ , ζ = ± (114)

with the initial conditions (102) (here we consider the case when the fifth-order term in the
nonlinearity in the NLM is absent; a general case is considered a little later). The coefficients
δ1,±, δ2,± in (114) are proportional to the derivatives of the susceptibility with respect to the
frequency and defined by (442) and (393). The Fourier transforms of the new terms in (114)
create the same FNLR as the terms in (440) (for details see sections 6.2 and 8.3.2). The
approximation error is of order

U − UZ = O(β3) + O(β�) + O(�) (115)

The parameter � does not enter into (114), but it is important for the matching of the initial
data for the NLS with the excitation currents for the NLM (see section 5.2 for details) and
determines the slow time scale in the NLM. Note that the last term in (115) corresponds to
interband interactions and is discussed below.

Now we briefly discuss the relative magnitude of the terms in (114). It follows from (114)
that (

∂t + iL[4]
ζ

)
Zζ = O(α) (116)

Hence, the correction terms due to the frequency dependence have magnitude O(α2). This
agrees with the scaling � ∼ α in (15). Now we compare the contribution of the corrective
terms with the terms of order O(α2) that come from other sources. When the fifth- and higher
order terms in the expansion of FNL(U) are much smaller than O(α2), namely (401) holds,
they can be neglected. When the fifth-order term in FNL(U) is exactly of order O(α2) , it has
to be taken into account by adding the terms of the form Q5,ζ Z2

−ζ Z3
ζ to (114) (an explicit

formula for Q5,± is given in (410)) thus reducing the error of the approximation from this
source to O(βα).

1.4.4.1 Simplification of the system. Now we can simplify (114). We consider the case
(38). First, we write (114) in the form

(1 + απδ1,ζ |Zζ |2)
[
∂t + iL[4]

ζ

]
Zζ + απδ2,ζ Z2

ζ

((
∂t + iL[4]

ζ

)
Zζ

)∗ = απ p[2]
ζ [−i �∇r]

(
Z2

ζ Z∗
ζ

)
(117)
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and solve for (∂t + iL[4]
ζ )Zζ obtaining an equation equivalent to (117) where we keep terms of

order απ and α2
π . According to (113) we can neglect spatial derivatives in terms with the factor

α2
π (this requires, strictly speaking, some regularity of solutions of the ENLS (see section 7

for references)). Therefore (117) can be rewritten as:[
∂t + iL[4]

ζ

]
Zζ = απ

(
p[2]

ζ [−i �∇r]
(
Z2

ζ Z∗
ζ

)) − α2
πδ1,ζ Qζ |Zζ |4 Zζ

−α2
πδ2,ζ Q∗

ζ |Zζ |4 Zζ + O(α3) + O(βα2)

Consequently, we introduce the following equation with a quintic nonlinearity[
∂t + iL[4]

ζ

]
Zζ = απ

(
p[2]

ζ [−i �∇r]
(
Z2

ζ Z∗
ζ

)) + α2
πδ5,ζ |Zζ |4 Zζ (118)

δ5,ζ = −δ2,ζ Q∗
ζ − δ1,ζ Qζ , ζ = ± (119)

and with the initial condition (102). The solution of this equation approximates the solution of
(114). Solutions of (118) approximate solutions of the NLM with the same order of accuracy
as solutions of (114). Hence, (58) gives an approximate solution to the NLM with the error
estimate (115). Note that to take into account the fifth-order term in the expansion of FNL(U)
we have to use the coefficients Q5,± defined by (410), which effect the values of δ5,+, δ5,− in
(118). Namely, the values of the coefficients that take into account the fifth-order terms of the
NLM are

δ5,ζ = −δ2,ζ Q∗
ζ − δ1,ζ Qζ + Q5,ζ , ζ = ± (120)

with Q5,± and δ1,±, δ2,± respectively defined by (410) and (442).
It is interesting that the both refinements coming from the frequency dependence of the cubic

susceptibility and the fifth-order susceptibility are taken care of by the same fifth-order term
δ5,±|Z±|4 Z± in the NLS. In conclusion, to take into account these effects we take in (58) the
solution Z± of (118).

If the quintic terms of the NLM are taken into account as in (120), the excitation currents
of NLM are formed as in section 7 and � ∼ α, the estimate of error of approximation by
solutions of (118) still takes the form (115). The third term in (115) has a different nature. It
is caused by interband interactions; we discuss this in the section right after this discussion.
When (118) is extended to take care of the interband interactions, (115) takes the form of (94).
In particular, for the classical NLS scaling (26) the error is O(β3). Let us compare (118) with
the classical NLS. According to (113), the corrective terms

απ p[2]
ζ [−i �∇r]

(
Z2

ζ Z∗
ζ

)
(121)

involving the second-order derivatives which we have added here are estimated by O(αβ2) =
O(β4). The quintic corrective term α2

πδ5,ζ |Zζ |4 Zζ is estimated by O(α2) = O(β4) too, and
its effect �−1 O(β4) = O(β2) on the solution is larger than the difference O(β3) of NLM and
ENLS solutions in (94).

1.4.4.2 Effect of interband interactions. In the one-dimensional case of classical NLS
scaling the term O(�) in (115) has magnitude O(β2) and gives a leading contribution to the
error. This term originates from the interband interactions, i.e. non-frequency-matched (non-
FM) interactions that involve indirectly excited modes. The significance and exact contribution
of these interactions to the NLM can be found when all higher order terms in the analytic
expansion (160) are taken into account. We can construct the ENLS system which takes the
effect of such interactions into account and admits an improved error estimate, namely O(�)
in (115) is replaced by O(�2) yielding (94), i.e. the total error is reduced from O(β2) to
O(β3) . These ENLSs in addition to (118) have to include another pair of scalar nonlinear
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Schrödinger-type equations for auxiliary functions Z+,1 and Z−,1 with zero initial data; there
are additional nonlinear Schrödinger-type nonlinear terms which couple these two equations
with (118) forming a four-component system. For example, a cubic term with Z3

+ is included in
the equation for Z+,1 and a cubic term with (Z∗

+)2 Z+,1 in the equation for Z+,1. An additional
two equations for Z+,1 and Z−,1 modify the dynamics of Z+ and Z− but (58) preserves its
form and includes only Z+ and Z− . The coefficients at the coupling cubic terms describe
nonlinear interactions between spectral bands related to the third harmonic generation. Since a
detailed explanation and introduction of the coupling coefficients would require new notations
and techniques which are beyond the scope of this paper we leave it for a future article.

1.4.5 Complex initial data. There are (see [35]) situations when complex electromagnetic
vector fields are of interest and useful [35]. In this case the excitation currents are still given
essentially by (55), but now ĥζ and ĥ−ζ are unrelated, and consequently the current can be
complex-valued. This also may happen if (6) does not hold. In this case, in contrast to (193),
the conjugation property does not have to hold and generically we may have

ĥ+(q) �= ĥ−(−q)∗ (122)

In this case the initial condition (102) does not involve the restriction (103). Consequently, we
cannot assume that Z− = Z∗

+, in (114). This system can also be reduced to the system (118)
with a quintic nonlinearity. The estimate (115) holds in the complex-valued case too.

Note that if

ĥ+(q) �= 0, ĥ−(q) = 0 (123)

the solutions of (114) and (118) with ζ = − equal zero:

Z−(r, t) = 0 (124)

Substituting Z− = 0 into (114), we observe that Z+(r, t) becomes a solution of the linear
Schrödinger equation. This fact shows that the nonlinearity in the classical NLS stems from
the interaction of two modes of the doublet {(+, n0, k∗), (−, n0, −k∗)} and when one of the
modes is not initially excited the nonlinear interaction disappears at the prescribed accuracy
level.

1.4.6 Bidirectional waves. If the linearly excited waves propagate in both directions
±∇ωn0 (k∗) the non-FM interactions between two wavepackets are of the same order as the
first-order susceptibility corrections in (114). The corresponding interactions involve four
modes Ũζ,n0 (±k∗ + η, t), ζ = ±1, and their dynamics is approximated by the ENLS solu-
tions Zϑ

ζ , ϑ = ±. The ENLS system in the general complex currents case consists of four
coupled equations. Let us consider here the system in the simplest case when the excitation
currents and the nonlinearity are real and we use (38) (for the general case see section 5.4, in
particular (353)). In this case Z±

−ζ (r, t) = Z±
ζ (r, t)∗ and the system reduces to the following

two equations:[
∂t + iγ(4)[−iϑ �∇r]

]
Zϑ

+ + απδϑ
×,+(|Z−ϑ

+ |2 Z−ϑ∗
+ )

= −απδϑ
1,+ Zϑ

+ Zϑ∗
+

[
∂t + iγ(4)[−iϑ �∇r]

]
Zϑ

+ − απδϑ
2,+(Zϑ

+)2
[
∂t − iγ(4)[iϑ∇r]

]
Zϑ∗

+

+ απ pϑ,[2]
+ [−i �∇r]((Zϑ

+)2 Zϑ∗
+ ), ϑ = ± (125)

We can approximate this system similarly to (118) by the system

[∂t + iγ(4)[−iϑ �∇r]]Zϑ
+ = απ pϑ,[2]

+ [−i �∇r]((Zϑ
+)2 Zϑ∗

+ )

−απδϑ
×,+(|Z−ϑ

+ |2 Z−ϑ∗
+ ) + α2

πδϑ
5,+|Zϑ

+|4 Zϑ
+, ϑ = ± (126)
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where

δ+
5,+ = −δ+

2,+ Q+∗
+ − δ+

1,+ Q+
+, δ−

5,+ = −δ−
2,+ Q−∗

+ − δ−
1,+ Q−

+ (127)

and δ±
×,ζ are coefficients defined by (349), (345), and (346).

If (i) the fifth-order nonlinear terms in the NLM are taken into account by (120), (ii) (97)
holds, (iii) excitation currents are formed as in section 7 and (iv) � ∼ α, then the approxima-
tion error estimate (115) holds. To obtain an improved estimate (94) the effect of interband
interactions has to be taken into account by adding four equations for Zϑ

ζ,1with cubic coupling
terms.

Note that the substitution Zϑ
+ = e−iγ0τ/�zϑ

+, where γ0 = ωn0 (k∗), τ = �t , transforms the
system (126) into a similar one, namely[

∂τ + i

�
γ 0

(4)[−iϑ �∇r]

]
zϑ
+ = απ

�
[pϑ,[2]

+ [−i �∇r]((zϑ
+)2zϑ∗

+ ) − δϑ
×,+eiγ0τ/�(|z−ϑ

+ |2z−ϑ∗
+ )

+απδϑ
5,+|zϑ

+|4zϑ
+] (128)

with the differential operator γ 0
(3)[i∇r] having no zero-order terms. This system has the oscilla-

tory coefficients απδ±
×,+eiγ0τ/� accounting for the effect of the non-FM interactions. Integration

over τ of these coefficients produces the factor �/ωn0 (k∗) and we get for τ ′ ≤ τ∗:

απ

∫ τ ′

0
δ−
×,+eiγ0τ/�(|z+

+|2z+∗
+ ) dτ = O(α�) (129)

thus showing that the coupling interactions are suppressed due to the frequency mismatch and
απδ+

×,+(|Z−
+|2 Z−∗

+ ) in the case of the classical NLS scaling after the integration have the same
order of magnitude O(α�) = O(β4) as α2

πδ+
5,+|Z+

+|4 Z+
+ = O(α2) = O(β4) and fourth-order

derivatives in γ 0
(4)[−i �∇r]Z+

+ which are also O(β4).

Remark For a derivation based on anharmonic Maxwell–Lorenz system of coupled-mode
equations which describe bidirectional propagation of waves in one-dimensional periodic
structures, see [36] and references therein. �

1.4.7 Other scalings and the reduction of ENLS. Recall that when deriving the NLS
and ENLS and providing the related error estimates, we allow an arbitrary power dependence
between the parameters � and β. The condition (15) on � and α also has the form (16),
we take here κ0 = 1, that is α ∼ �. The properties of the ENLS in different ranges of the
parameters imply corresponding properties for the NLM. The ENLSs themselves can be
reduced to simpler equations by formally throwing away higher order terms. Estimating the
order of terms in the ENLS one has to take into account the discussion at the beginning of
section 1.4.

1.4.7.1 Example of a strongly dispersive scaling. For example, let us consider the
particular case

α ∼ � ∼ β3 (130)

implying strong dispersion

θ−1 = β2

�
� 1 (131)
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The right-hand side of (94) is now O(β3). The terms of order O(α�) = O(β6) andO(α2) =
O(β6) in (126) after multiplication by �−1 = β3 are now of the same order as the error and
can be neglected. After discarding the higher order terms in (126) we get the reduced equation[

∂t + iγ(4)[−iϑ �∇r]
]
Zϑ

+ = απ pϑ,[2]
+ [−i �∇r]((Zϑ

+)2 Zϑ∗
+ ) (132)

and the equation for Z+
+ is now decoupled from the equation for Z−

+ at the level of accuracy
O(β3) on the time interval of length τ∗/β3. Note that the coupling terms with the inter-
band component mentioned at the end of section 1.4.4 also are of order O(α�) and can be
neglected.

1.4.7.2 Example of a weakly dispersive scaling. Let us consider the particular case
when (30) holds:

� ∼ β, α ∼ � (133)

First, consider the third-order ENLS (109). The error term in (112) is now of order

O(β2) + O(�) = O(β) (134)

Since (113) holds, the second and third derivatives inL[3]
+ Z+ have orderβ2 andβ3, respectively;

they are O(β2) and have to be thrown away. The first derivative in απ p[1]
+ [−i �∇r](Z2

+ Z−) is
also O(αβ) = O(β2). The reduced equation takes the form of a first-order hyperbolic equation

∂t Z+ + iL[1]
+ Z+ = απ p[0]

+ [−i �∇r](Z2
+ Z−) (135)

In the case of the space dimension d = 1, r = x , the reduced equation takes the form

∂t Z+ + iγ0 Z+ + βγ1

�
∂x Z+ = απ Q+|Z+|2 Z+ (136)

and a similar equation for Z− = Z∗
+. This system approximates the NLM with the accuracy

O(β) in the case of the scaling (133). As we have pointed out earlier, the condition β2/� � 1
in (30) implies that the dispersive effects are small, which agrees with the form of equation
(135) which does not include dispersive terms.

Remark The described reduction of the universal ENLS to the reduced ENLS in the case of
particular scaling relations between parameters α, β and � is quite simple. The nontrivial part
is the validity of the error estimates in the whole range of parameters, which guarantees that
the reduced equations approximate well the exact solutions of the NLM itself. The estimates
imply that the differences between different reduced ENLSs correspond to actual differences
between different classes of solutions of the NLM which are generated by different initial
excitations. �

2. Modal decompositions and power series expansions of the linear and the first
nonlinear responses

The very form (58) of the approximation UZ ,n0 (r, t) is based on the modal decomposition.
Recall that one of our goals is the construction of excitation currents producing waves governed
essentially by NLSs. This construction is carried out in terms of the modal decomposition of
all fields which is absolutely instrumental to the analysis of nonlinear wave propagation [17].
We are particularly interested in approximations for propagating waves as the quantities α, �

and β approach zero, and these approximations are constructed based on relevant asymptotic
expansions of the involved fields.
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2.1 Bloch modal decomposition

We systematically use modal decompositions based on the Bloch eigenmodes G̃n̄(r, k) of the
linear Maxwell operator M in (3):

MG̃n̄(r, k) = ωn̄(k)G̃n̄(r, k) (137)

where

n̄ = (ζ, n), n = 1, 2 . . . , ζ = ±1; ωn̄(k) = ωζ,n(k) = ζωn(k), ωn+1(k) ≥ ωn(k) ≥ 0
(138)

n being the band number and k being the quasimomentum taking values in the Brillouin zone.
For notational simplicity we consider the cubic lattice with the lattice constant L = 1 and,
consequently, with the Brillouin zone being the cube [−π, π]3. Note that for given n and k
there are exactly two eigenvalues ωn̄(k) = ζωn(k), ζ = ±1. Schematic graphs of dispersion
relations are given in figure 2.

The inversion symmetry condition (2) for the dispersion relations, which is

ωn(−k) = ωn(k), n = 1, 2, . . . (139)

readily implies the following properties of its first-, second- and higher order differentials

ω′
n(−k) = −ω′

n(k), ω′′
n(−k) = ω′′

n(k), . . . , ω( j)
n (−k) = (−1) jω( j)

n (k), j = 1, 2, . . . (140)

The eigenmodes G̃n̄(r, k) are six-component vector fields satisfying the following relations
[17]:

G̃n̄(r, k) =
(

G̃D,n̄(r, k)
G̃B,n̄(r, k)

)
, �∇r · G̃D,n̄(r, k) = �∇r · G̃B,n̄(r, k) = 0, r in [0, 1]3 (141)

G̃n̄(r + m, k) = exp {ik · m} G̃n̄(r, k), m in Z3 (142)

The properties of G̃ζ,n(r, k) and ωn(k) are discussed in detail in [17]. We introduce the scalar
product

(U, V)H =
∫

[0,1]d

U(r) · σε(r)V(r)∗ dr, σε(r) =
[

ε−1(r) 0
0 I

]
(143)

Figure 2. Schematic graphs of the dispersion relations corresponding to a pair of conjugate bands ζωn(k), ζ = ±,
which are inversion symmetric.



Nonlinear photonic crystals. IV 179

and assume that G̃ζ,n(r, k) are orthonormal in H:

‖G̃n̄( · , k)‖H = (G̃n̄(·, k), G̃n̄(·, k))1/2
H = 1 (144)

Notice that if the condition (6) holds then the complex conjugate of every eigenmode
G̃ζ,n(r, k) coincides with the eigenmode G̃−ζ,n(r, −k), i.e.

[G̃ζ,n(r, k)]∗ = G̃−ζ,n(r, −k) (145)

under the assumption Imε(r) = {Imε jm(r)}3
j,m=1 = 0.

Let us consider now a solution U(r, t) to the NLM (3) and its Floquet–Bloch modal decom-
position [17]

U(r, t) =
∑

n̄

1

(2π )d

∫
[−π,π ]d

Ũn̄(r, k, t) dk, Ũn̄(r, k, t) = Ũn̄(k, t)G̃n̄(r, k) (146)

where Un̄(r, k, t) are the modal components and Ũn̄(k, t) are the (scalar) modal coefficients
given by the formula

Ũn̄(k, t) =
∫

Rd

U(r, t) · σε(r)G̃∗
n̄(r, k) dr (147)

The property (145) implies the following relations for the modal coefficients of the complex
conjugate fields

(Ũ ∗)ζ,n(k, t) = [Ũ−ζ,n(−k, t)]∗ (148)

The Floquet–Bloch transform Ũ of U, which involves all modes, is defined by the formula

Ũ(r, k, t) =
∑

n̄

Ũn̄(r, k, t) =
∑

n̄

Ũn̄(k, t)G̃n̄(r, k) (149)

It is often convenient to write the coefficients Ũn̄(k, t) in a special form, namely

Ũn̄(k, t) = ũn̄(k, τ )e−iωn̄ (k)t , τ = �t (150)

factoring out the carrier frequency ωn̄(k). This equality defines the modal coefficient ũn̄(k, τ )
as a function of slow time τ . Similarly to (149) we define

ũ(r, k, τ ) =
∑

n̄

ũn̄(r, k, τ ) =
∑

n̄

ũn̄(k, τ )G̃n̄(r, k) (151)

2.2 Nonlinearity and related power expansions

The nonlinear term FNL(U) in the NLM (3) is given by the formula [17–20]

FNL(U) = FNL(U; α) =
[

0
∇ × SD(r, t ; D; α)

]
, U(r, t) =

[
D(r, t)
B(r, t)

]
(152)

where

SD(r, t ; D) = S(3)
D (r, t ; D) + αS(5)

D (r, t ; D) + α2S(7)
D (r, t ; D) + · · · (153)

is a series of causal integral operators S(2n+1)
D that are determined based on the response

functions from (8). Notice that the representation (153) consists of only odd-order terms as
it is typical for dielectric media allowing NLS regimes. The dominant cubic nonlinearity is
given by the causal integral

S(3)
D (r, t ; D) =

∫ t

−∞

∫ t

−∞

∫ t

−∞
R(3)

D (r; t − t1, t − t2, t − t3)
...

3∏
j=1

D(r, t j ) dt j (154)
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where the trilinear tensorial operator R(3)
D is assumed to be symmetric:

R(3)
D (r; t − t1, t − t2, t − t3)

... D1D2D3 = · · · = R(3)
D (r; t − t2, t − t1, t − t3)

... D2D1D3 (155)

An alternative and often used representation of the polarization is through its frequency de-
pendent susceptibility tensor χ(3)

D ,

χ(3)
D (r; ω1, ω2, ω3) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
R(3)

D (r; t1, t2, t3) e{i(ω1t1+ω2t2+ω3t3)} dt1 dt2 dt3 (156)

Note that the standard frequency-dependent susceptibility tensor χ (3) (r; ω) is determined
in terms of the nonlinear polarization PNL(r, t ; E(·)) of the medium by a formula similar to
(156) (see [21]). The tensor χ

(3)
D (r; ω) (which acts on D) is expressed in terms of χ(3) (r; ω)

(which acts on E) and the dielectric tensor ε(r) by the following formula (see [17, 20] for
details):

χ(3)
D (r; ω)

...
3∏

j=1

D j = 4πε−1(r)χ(3)(r; ω)
...

3∏
j=1

[ε−1(r)D j ] (157)

Let us consider the power series expansion (11) for the exact solution U to the NLM (3) with
the current J satisfying the relations (9) and (35), i.e.

U = U(0) + αU(1) + α2U(2) + · · · , J = J(0) + αJ(1) + · · · , (158)

J( j)(r, t) = 0 if t ≤ 0 or t ≥ τ0

�
, j = 0, 1, . . . (159)

For every amplitude ũn̄(k, τ ) defined by (146) and (150) the series corresponding to (158)
becomes

ũn̄(k, τ ) =
∞∑

m=0

ũ(m)
n̄ (k, τ )αm (160)

Power expansions for the amplitudes ũn̄(k, τ ) as well as for other quantities of interest with
respect to the small parameter α are given by convergent Taylor series. The expansions for the
amplitudes ũn̄(k, τ ) with respect to the small parameters � and β are of a more complicated
nature related to almost time-harmonic expansions and asymptotic expansions for oscillatory
integrals (see equation (169) and also section 6.2).

We recall that the current J(1) in (158) is introduced to provide proper transfor-
mation of the initial data for the NLS into the excitation current (see section 5.2
for details). The expansion (158) determines the linear medium response U(0) and the
first nonlinear response U(1) satisfying, respectively, the evolution equations (13) and
(14), i.e.

∂t U(0) = −iMU(0) − J(0); U(0)(t) = 0 for t ≤ 0 (161)

∂t U(1) = −iMU(1) + F (1)
NL(U(0)) − J(1); U(1)(t) = 0 for t ≤ 0

(162)
F (1)

NL(U(0)) = FNL(U(0); α)|α=0
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We now introduce the currents J(0) and J(1) satisfying the conditions (159) by their modal
coefficients as follows:

J̃( j)
n̄ (r, k, t) = J̃ ( j)

n̄ (k, t)G̃n̄(r, k), J̃ ( j)
n̄ (k, t) = e−iωn̄ (k)t

n̄ j̃ ( j)
n̄ (k, τ ), τ = �t

(163)
j̃ ( j)

n̄ (k, τ ) = 0 if τ ≤ 0 or τ ≥ τ0, j = 0, 1

For the currents J(0) and J(1) to be real, in view of (148), their modal coefficients should satisfy
the relations [

j ( j)
ζ,n(k)

]∗ = j ( j)
−ζ,n(−k), j = 0, 1 (164)

From (161), (162), (163) and (160) we get the following representation for the modal forms
of the first two terms U(0) and U(1) of the power expansion (158):

Ũ( j)
n̄ (r, k, t) = Ũ ( j)

n̄ (k, t)G̃n̄(r, k), Ũ ( j)
n̄ (k, t) = ũ( j)

n̄ (k, τ )e−iωn̄ (k)t , τ = �t, j = 0, 1 (165)

where

ũ(0)
n̄ (k, τ ) = −

∫ τ

0
j̃ (0)
n̄ (k, τ ) dτ1 (166)

Ũ (1)
n̄ (k, τ ) = 1

�

∫ τ

0
e−iωn̄ (k) (τ−τ1)

�

{[F (0)
NL

(
U(0)

)]
n̄
(k, τ ) − J̃ (1)

n̄ (k, t)
}

dτ1 (167)

Similarly to (151) we introduce

ũ(0)(r, k, τ ) =
∑

n̄

ũ(0)
n̄ (r, k, τ ) =

∑
n̄

ũ(0)
n̄ G̃n̄(r, k) (168)

2.2.1 Structured asymptotic expansions. We are interested in asymptotic approximations
with respect to �, β of the coefficients ũ( j)

n̄ (k, τ ) = ũ( j)
n̄ (k, τ ; �, β) of the expansion (158) given

by (165). We primarily study the modal amplitudes ũ(1)
n̄ (k, τ ) = ũ(1)

n̄ (k, τ ; �, β) of the FNLR
U(1) for small � and β. Our analysis shows that the dependence on � and β is more complicated
than on α. There are three different types of asymptotic expansions involved in the description
of the dependence of ũ(1)

n̄ (k, τ ; �, β) on �, β; the first type involves powers of �; the second
one involves powers of β; and the third type involves powers of βν+1/� if θ−1 = β2/� ≤ 1,
where ν = 2, 3, 4 is the order of the NLS or ENLS. The resulting expansion of the modal
amplitudes of the NLM has the form of a structured power asymptotic series. In the weakly
dispersive case θ−1 = β2/� ≤ 1 we have the following expansions:

ũ(1)
ζ,n0

(k, τ ; �, β) = 1

�

N1∑
l1=0

N2∑
l2=0

N3∑
l3=0

cNLM
l1,l2,l3

(k, τ ; ζ, n0)�l1βl2

(
βν+1

�

)l3

+ 1

�

[
O(β�N1 ) + O(βN2+1) + O

((
βν+1

�

)N3+1)]
(169)

The powers (βν+1/�)l3 (that is (β4/�)l3 for ν = 3) come from the expansion in (273). We
would like to emphasize that the form (169) for ũ(1)

ζ,n0
(k, τ ; �, β) is not imposed as an ansatz,

but it follows from the analysis of the interaction integrals, and it describes properties of
exact solutions to the NLM. Powers �l1 stem from the asymptotic expansions for almost
monochromatic waves (for details see section 6). Some expressions in the interaction integrals
admit regular Taylor expansions (see section 4.1.1) that lead to the powers βl2 . The complexity
of the expression (169) reflects the complexity of exact solutions to the NLM. The type of
dependence in (169) shows that formal asymptotic expansions of solutions with respect to
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powers of independent parameters � and β are not very useful since such expansions would
involve negative powers of the small parameter �. In addition, this form of dependence implies
that if one prescribes power relations of the form (16), (29) or (31), the resulting expansions
in powers of one remaining parameter would strongly depend on the choice of κ1 and κ0,
whereas the higher order approximating ENLS, which we introduce, are universal—they do
not depend on κ1 and κ0. Introduction of a specific power dependence � = βκ1 selects from
the universal ENLS, which is described in section 1.4, a specific reduced ENLS depending on
the choice of κ1 (see section 1.4.7 for examples).

Our strategy for approximating ũ(1)
ζ,n0

by a solution of the NLS can be described as follows.
We consider solutions Vζ (r, t) of the NLS, take their Fourier transform V̂ζ (η, t) and similarly
to (150) introduce slowly varying coefficients v̂ζ (η, τ )

V̂ζ (η, t) = v̂ζ (η, τ )e−iζγ(ν)(ζη)t , τ = �t (170)

Similarly to (160) we introduce asymptotic expansions in α

v̂ζ (η, τ ) = v̂
(0)
ζ (η, τ ) + αv̂

(1)
ζ (η, τ ) + · · · (171)

(see section 5.2 for details). We expand the Fourier transform of a solution to the NLS similarly
to (169): and respective expansion for v̂

(1)
ζ

v̂
(1)
ζ (η, τ ; �, β) = �−1

N1∑
l1=0

N2∑
l2=0

N3∑
l3=0

cNLS
l1,l2,l3

(η, τ ; ζ )�l1βl2

(
βν+1

�

)l3

+ 1

�

[
O

(
�N1+1

) + O
(
βN2+1

) + O

((
βν+1

�

)N3+1)]
(172)

The coefficients CNLS
l1,l2,l3

of the expansion depend on the choice of parameters p[ν−2]
± and δ1,±

in the NLS (114). These parameters are chosen so that the following conditions are satisfied:

CNLS
l1,l2,l3

(η, τ ; ζ ) = CNLM
l1,l2,l3

(k∗ + η, τ ; ζ, n0), l1 ≤ N1, l2 ≤ N2, l3 ≤ N3 (173)

To satisfy the conditions we choose, in a proper way, the excitation currents for the NLM based
on initial data for the NLS. In particular, if ν = 3 we take N1 = 0, N2 = 1, N3 = 0. The details
of the related analysis are rather technical and are considered in subsequent sections. Recall
again that the form and coefficients of (169) are the result of explicitly defined transformations
of the interaction integral and should be considered as a result of the analysis rather than a
starting point. Similarly, fulfilment of (173) follows from our choice of excitation currents
and coefficients of the NLS, and is based on analysis of the interaction integrals.

The case of strong dispersion is similar, but expansions (169) and (172) would include
powers of �/β2.

2.2.2 First nonlinear response and modal susceptibility. For the current J(1) of the form
(163) and � → 0 the FNLR U(1) determined by (167) can be represented as the following
series based on the time-harmonic expansion (see section 6.2 for details)

U(1) = U(1,0) + �U(1,1) + �2U(1,2) + · · · (174)

ũ(1)
n̄ = ũ(1,0)

n̄ + �ũ(1,1)
n̄ + �2ũ(1,2)

n̄ + · · · (175)

Notice that (174) and (175) are not the Taylor series, and the quantities U(1,s) and ũ(1,s)
n̄ ,

s = 0, 1, . . . in (174) and (175) are represented as oscillatory integrals which depend on �

themselves. As we will see in section 4.3 and 4.1.2 respectively if � → 0 we have ũ(1,s)
n̄ ∼ �d−1

for the dispersive case and ũ(1,s)
n̄ ∼ �−1 for the weakly dispersive case. Since we are interested
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in the FNLR U(1) for small � we look first at the dominant term U(1,0) in the series (174). We
refer to U(1,0) as the time-harmonic FNLR. Using the formula (167) and the time-harmonic
approximation of F (0)

NL together with the definitions of G̃n̄(r, k), the susceptibility χ(3)
D , the

inner product (·, ·)H by respectively (141), (156) and (143) we get the following integral
representation for ũ(1,0)

n̄ (see [17] and section 6.2 for details)

ũ(1,0)
n̄ (k, τ ) = 1

�

∑
n̄′,n̄′′,n̄′′′

∫ τ

0

∫
[−π, π ]2d

k′ + k′′ + k′′′ = k

exp

{
iφ�n(�k)

τ1

�

}
(176)

Q̆�n(�k)ũ(0)
n̄′ (k′, τ1)ũ(0)

n̄′′ (k′′, τ1)ũ(0)
n̄′′′ (k′′′, τ1) dk′dk′′dτ1 − ũ(1)

n̄ (J1; k, τ )

where

�k = (k, k′, k′′, k′′′), �ζ = (ζ, ζ ′, ζ ′′, ζ ′′′)
(177)

�n = (n̄, n̄′, n̄′′, n̄′′′) = ((ζ, n), (ζ ′, n′), (ζ ′′, n′′), (ζ ′′′, n′′′))

φ�n(�k) = ζωn(k) − ζ ′ωn′ (k′) − ζ ′′ωn′′ (k′′) − ζ ′′′ωn′′′ (k′′′) (178)

Q̆�n(�k) = 1

(2π )2d

([
0

Qχ(3)
D

]
, G̃n̄(r, k)

)
H

(179)

Qχ(3)
D

= ∇ × χ(3)
D (ωn̄′ (k′), ωn̄′′ (k′′), ωn̄′′′ (k′′′))

... G̃D,n̄′ (r, k′)G̃D,n̄′′ (r, k′′)G̃D,n̄′′′ (r, k′′′),

ũ(0)
n̄ are defined in (166) and

ũ(1)
ζ,n0

(J1; k, τ ) = 1

�

∫ τ

0
j̃ (1)
ζ,n0

(k, τ1) dτ1

(180)
ũ(1)

n̄ (J1; k, τ ) = 0 for n �= n0

The quantity Q̆�n(�k) given by the integral (179) plays an important role in the approximation
analysis and we refer to it as the modal susceptibility. An estimate for the difference ũ(1)

n̄ (k, τ ) −
ũ(1,0)

n̄ (k, τ ) is given by (395).
Note that though the formula (179) uses a specific form of FNL in (152), that particular

form it is not essential for our analysis. For example, if the D-component of FNL were not
zero, or if χ(3)

D acted also on the B-component of the vector U, all steps and conclusions of
our analysis would remain the same.

We will also use the following notation which allows us to rewrite (176) in a shorter way:

F̃n̄
[(

u(0)
)3]

(k, τ ) =
∑

n̄′,n̄′′,n̄′′′

∫ τ

0

∫
[−π, π ]2d

k′+k′′+k′′′ = k

× eiφ�n (�k) τ1
�

(∇ × Iχ,�n
(
ũ(0)

)
, G̃n̄(r, k))H

�(2π )2d
dk′dk′′dτ1

Iχ,�n
(
ũ(0)

) = χ(3)
D,B(r; ωn̄′ (k′), ωn̄′′ (k′′), ωn̄′′′ (k′′′))

... ũ(0)
n̄′ (r, k′, τ1)ũ(0)

n̄′′ (r, k′′, τ1)ũ(0)
n̄′′′(r, k′′′, τ1)

(181)

where ũ(0) is defined by (168),

ũ(0)
n̄ (r, k, τ ) = ũ(0)

n̄ (k, τ )G̃n̄(r, k), ũn̄(i) =
[

ũD,n̄(i)

ũB,n̄(i)

]
(182)
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and

χ(3)
D,B(r; ω1, ω2, ω3)

... ũn̄′ ũn̄′′ ũn̄′′′ =
[

0

χ(3)
D (r; ω1, ω2, ω3)

... ũD,n̄′ ũD,n̄′′ ũD,n̄′′′

]
(183)

is a tensor obtained from χ(3)
D . This tensor acts not in the three-dimensional D-space, but in

the six-dimensional (D, B)-space. It acts on the D-components of ũ(0)
n̄′ taking values in the

B-component as in (179). Using (181) we can rewrite (176) in the form:

ũ(1,0)
n̄ (k, τ ) = F̃n̄[

(
u(0)

)3
](k, τ ) − ũ(1)

n̄ (J1; k, τ ) (184)

Below we analyse (176) using the approach of [17–20] in the case when the frequency of
the excitation current (163) is in a fixed band n0, the quasimomentum k is in a vicinity of a
fixed quasimomentum k∗ and the excitation current is almost time-harmonic (such currents
are described in detail in the following section). The term ũ(1)

n̄ (J1; k, τ ) in (176), as one can see
from (180), is due to the excitation current J1 with amplitudes j̃ (1)

n̄ . This current is introduced
to transform the initial data for the NLS into a proper excitation current with maximal accuracy
(see section 5.2 for details). The modal components of j (1)

n̄ are defined by the following formula

j̃ (1)
ζ,n0

(ζk∗ + η, τ ) = exp

{
iωζ,n0 (ζk∗ + η)

τ1

�

}
Ĵ (1)

Z ,ζ (η, t), t = τ

�
, ζ = ± = ±1 (185)

with Ĵ (1)
Z ,ζ being defined by (330).

2.3 Almost time-harmonic excitations

The concept of an almost time-harmonic excitation is central to the theory of nonlinear mode
interactions. An abstract form for an almost time-harmonic function a(t) is given by formula
(10). In this section we give a precise definition of an almost time-harmonic excitation current
which generates nonlinear Schrödinger-type regimes for the NLM. The first step in setting up
the current J as defined by (35) or (158) is to assume that its modal composition (163), (164)
involves only a single spectral band with the index n0, i.e.

J̃( j)
n0

(r, k, t) = j̃ ( j)
+,n0

(k, τ )G̃+,n0 (r, k)e−iωn0 (k)t + j̃ ( j)
−,n0

(k, τ )G̃−,n0 (r, k)eiωn0 (k)t

(186)
τ = �t, J̃( j)

n (r, k, t) = 0, n �= n0, j = 0, 1; J̃( j)
n (r, k, t) = 0 for all n if j > 2

The second step in the construction of the current J is to pick a single quasimomentum k∗ and
to compose J of only the modes with quasimomenta k in a β-vicinity of ±k∗. The choice of
the form of the excitation current defines a correspondence between initial data for the NLS
and excitation currents for the NLM. Suppose that we are given two scalar functions h±(r)
and assume that these h±(βr) are the initial data for the NLS such as (36), (37). In particular
they satisfy the relation

h−(r) = h∗
+(r) (187)

We define the current amplitudes j̃ (0)
ζ,n0

(k, τ ) in (186) by

j̃ (0)
ζ,n0

(k, τ ) = −�β−dψ0(τ )�(k−ζk∗)ĥζ

(
k − ζk∗

β

)
, τ = �t (188)

The function ĥζ is defined as the Fourier transform of the initial data hζ by the formula

ĥζ (q) = 1

(2π )d

∫
e−iq·rhζ (r) dr (189)
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To restrict ĥζ (q) from the entire Rd to a vicinity of k∗ in the Brillouin zone we use a smooth
cut-off function �(η), η = k − k∗ ∈ Rd , satisfying the relations

0 ≤ �(η) ≤ 1, �(−η) = �(η)

�(η) = 1 for |η| ≤ π0/2, �(η) = 0 for |η| ≥ π0 (190)

where π0 is a sufficiently small constant which satisfies the inequalities 0 < π0 < π/2. In
(188) ψ0(τ ) is a smooth function of the slow time τ such that

0 ≤ ψ0(τ ) ≤ 1, ψ0(τ ) = 0, t ≤ 0 and t ≥ τ0 > 0,

∞∫
−∞

ψ0(τ ) = 1 (191)

This function provides fulfilment of (9). The normalization factor �β−d in (188) makes the
linear response of the media to be of order one for any choice of small �, β. Notice that (189)
and (187) imply that

ĥ−ζ (q) = ĥζ (−q)∗, ζ = ±1 (192)

which together with (186) and (188) yield

j̃ (0)
−ζ,n(−k, τ ) = [

j̃ (0)
ζ,n(k, τ )

]∗
(193)

In addition, (189), (187) and (145) imply that J(0)(r, t) is real-valued (notice that (145) is
satisfied due the condition (6)). Observe also that it follows from (186) and (188) that the cur-
rent J(0)(r, t) is (i) real-valued, (ii) almost time-harmonic and (iii) composed of modes from
a single band n0 and quasimomenta in a β-vicinity of ±k∗. We call an excitation current de-
fined by (186)–(188) unidirectional since the group velocities ∇(−ωn0 (k∗)) and ∇(ωn0 (−k∗))
corresponding to both terms in (186) coincide thanks to (140).

As to the corrective current J(1) in (186), its modal amplitudes are defined by the formula
(185).

Remark In fact, our approach can be extended to excitation currents involving several k∗
and n. For such currents the NLM generically can be reduced with high precision to several
uncoupled NLSs, and we discuss this case in section 1.2. �

Remark Note that the magnitude of the inverse Fourier transform hζ (βr) of β−d ĥζ (q/β) in
(189) does not depend on β, implying boundedness of the maximum of its the absolute value.
To obtain boundedness in a different norm one has to introduce an additional dependence on
β into hζ (βr). For example, the integral of |βd/2hζ (βr)|2 is bounded uniformly in β. �

2.4 Linear response for the NLM

It follows from (165), (166) and (186) that:

Ũ(0)(k, t) = Ũ(0)
+,n0

(k, t) + Ũ(0)
−,n0

(k, t)

Ũ(0)
ζ,n0

(k, t) = ũ(0)
ζ,n0

(k, τ )G̃ζ,n0 (r, k)e−iζωn0 (k)t , ζ = ± (194)

Ũ(0)
ζ,n(k, t) = 0, n �= n0, τ = �t

In addition to that, if we introduce

ψ(τ ) =
∫ τ

0
ψ0(τ ) dτ1 (195)
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then using (166) and (188) we get

ũ(0)
ζ,n0

(k, τ ) = ψ(τ )β−d�(k − ζk∗)ĥζ

(
k−ζk∗

β

)
, τ = �t (196)

and, in particular,

ũ(0)
ζ,n(k, τ ) = 0 if either |k − ζk∗| ≥ π0, or τ = �t ≤ 0, or n �= n0 (197)

By (165) and (196)

Ũ (0)
n̄0

(k, t) = ũ(0)
ζ,n0

(k, τ )e−iζωn0 (k)t = ψ(τ )�(k − ζk∗)β−d ĥζ

(
k − ζk∗

β

)
e−iζωn0 (k)t (198)

Remark It follows from (194), (196), (197) and (198) that for the chosen currents the linear
medium response U(0) is composed of only the modes from a single band n0 corresponding to
the carrier wave frequency ωn0 (k) together with the opposite band corresponding to −ωn0 (k)
with wave numbers in a β-vicinity of respectively two wavevectors ±k∗. We call such an
excitation in a vicinity of ±ωn0 (±k) a doublet, see Figure 3. Note that the group velocities of
the two components of U(0) corresponding to the points ζk∗, ζ = ±1 and the bands ζωn0 (k)
are equal to ζ∇ωn0 (ζk∗) for ζ = ±1, and these group velocities are the same in view of (140).
Hence, a doublet is a unidirectional excitation. Consequently, if β is small U(0) is a real-valued
almost time-harmonic wavepacket propagating in the direction of ∇ωn0 (k∗) (see [18] for a
discussion of the group velocity of wavepackets in photonic crystals). �

The formula (196) suggests introduction of a local variable η and its scaled version q at
ζk∗ by the following formulas

η = βq = k − ζk∗ (199)

Figure 3. A real-valued excitation current based on the band number n0 and the quasimomentum k∗ directly excites
a pair of modes with quasimomenta ζk∗ and frequencies ζωn0 (ζk∗), ζ = ±, forming a doublet. The modes in the
doublet have a strong nonlinear interaction.
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Let us approximate ωn0 (k∗ + η) in a vicinity of η = 0 by its Taylor polynomial γ(ν)(η) of the
degree ν (see sections 8.1 and 8.2 for notation)

γ(ν)(η) = γ(ν)(k∗; η) =
ν∑

j=0

1

j!
ω( j)

n0
(k∗)(η j ) (200)

In particular, for ν = 2

γ(2)(η) = ωn0 (k∗) + ω′
n0

(k∗)(η) + 1

2
ω′′

n0
(k∗)(η2) (201)

where ω′
n0

(k∗) and ω′′
n0

(k∗) are respectively linear and quadratic forms, i.e. a vector and a
matrix, i.e.

ω′
n0

(k∗)(η) = ω′
n0

(k∗) · η, ω′′
n0

(k∗)(η2) = η · ω′′
n0

(k∗)η (202)

Note that (2), (140) and (200) imply that ωn0 (ζk∗ +η) = ωn0 (k∗ + ζη) and a similar property
for its Taylor polynomial, namely

γ(ν)(ζk∗; η) = γ(ν)(k∗; ζη) =
ν∑

j=0

1

j!
ω( j)

n0
(k∗)(ζη j ) (203)

The following Taylor remainder estimation holds

|ωn0 (ζk∗ + βq) − γ(ν)(ζβq)| ≤ Cβν+1|q|ν+1, q ∈ Rd (204)

After the change of variables (199) the linear response takes the form

Ũ (0)
ζ,n0

(ζk∗ + βq, t) = ψ(τ )�(βq)β−d ĥζ (q)e−iζγ(ν)(ζβq)t , τ = �t (205)

with ψ , � and ĥζ defined by (191), (190) and (189). Notice that for ν = 2 the phase function
γ(2)(η) in (205) is a quadratic polynomial which is identical to the phase function of the linear
response of the relevant linear Schrödinger equation (see (299) and (300)).

Let us consider now the properties of the functions ĥζ (q). We take two smooth functions
ĥζ (q), ζ = ±, defined for all q ∈ Rd that decay for large |q| faster than any negative power,
i.e.

|ĥζ (q)| ≤ CN�
(1 + |q|)−N� , ζ = ±, with arbitrarily large N� > 0 (206)

The condition (206) is used primarily to show that as β → 0 the function � in (188) does not
affect the asymptotic expansions we derive below. Notice that the wavevectors (quasimomenta)
k needed to compose a solution to the NLS via its Fourier transform vary over the entire space
Rd , whereas for the NLM we use quasimomenta from the Brillouin zone. Since �(βq)ĥζ (q) =
0 when |βq| ≥ π0 we can consider the right-hand side of (205) as a regular function in the
Brillouin zone. Using the above notation we rewrite (205) in the form

Ũ (0)
n̄ (ζk∗ + βq, t) = ũ(0)

n̄ (ζk∗ + βq, τ )e−iζγ(ν)(ζβq)t , τ = �t
(207)

ũ(0)
n̄ (ζk∗ + βq, τ ) = ψ(τ )�(βq)β−d ĥζ (q), n̄ = (ζ, n0)

Notice that by (190), �(βq) = 1 for |βq| ≤ π0, and it follows from (206) that

|�(βq)ĥζ (q) − ĥζ (q)| ≤ C ′
N�

βN� , |q| ≥ π0

2β
, with arbitrarily large N� > 0 (208)

Consequently, we have the representations for all q

ũ(0)
n̄ (ζk∗ + βq, τ ) = ψ(τ )ĥζ (q) + O(βN� )O(|ĥ|) (209)

where N� > 0 can be arbitrarily large.
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3. Asymptotic expansions for the FNLR for the Maxwell equations

From (176), (194) and (196) it follows that the FNLR for every n̄ = (ζ, n) is a sum of only
eight non-zero terms:

ũ(1,0)
n̄ (k, τ ) =

∑
ζ ′,ζ ′′,ζ ′′′

In̄,ζ ′,ζ ′′,ζ ′′′ (k, τ ) − ũ(1)
n̄ (J1; k, τ ) (210)

where the interaction integrals In̄,ζ ′,ζ ′′,ζ ′′′ have the following representations

In̄,ζ ′,ζ ′′,ζ ′′′ (k, τ ) = 1

�

∫ τ

0

∫
[−π, π ]2d

k′+k′′+k′′′ = k

exp

{
iφ�n(�k)

τ1

�

}
A�n(�k, τ1) dk′dk′′dτ1 (211)

with

A�n(�k, τ ) = Q̆�n(�k)ũ(0)
ζ ′,n0

(k′, τ )ũ(0)
ζ ′′,n0

(k′′, τ )ũ(0)
ζ ′′′,n0

(k′′′, τ ) (212)

and �k defined by (178). The term ũ(1)
n̄ (J1; k, τ ) is defined by (180). Note that indices �n involved

in the representation (211) satisfy the relation

n′ = n′′ = n′′′ = n0, �n = ((ζ, n), (ζ ′, n0), (ζ ′′, n0), (ζ ′′′, n0)) (213)

Observe also that for n �= n0 the integral (211) describes the nonlinear impact on the indirectly
excited modes. It can be non-zero, though, as we discussed in section 1.2 and show later in
section 3.2, it is small compared to n = n0 since it is not frequency matched.

Since the tensors R(3)
D in (153) are symmetric, the coefficients Q̆�n(k, k′, k′′, k′′′) are sym-

metric with respect to the interchange of (ζ (i), k(i)) and (ζ (l), k(l)) if relations (213) hold.
Consequently, we have

In̄,ζ ′,ζ ′′,ζ ′′′ = In̄,ζ ′′,ζ ′,ζ ′′′ = In̄,ζ ′′,ζ ′′′,ζ ′ (214)

It follows from (197) that the integrands in the right-hand side of (211) are non-zero only
when

|k′−ζ ′k∗| ≤ π0, |k′′−ζ ′′k∗| ≤ π0, |k′′′−ζ ′′′k∗| ≤ π0 (215)

Observe that since the very form of the integral In̄,ζ ′,ζ ′′,ζ ′′′ (211) obeys the phase matching
condition (71) through its domain of integration, the four-wave interactions may occur only
if

|ζ ′k∗ + ζ ′′k∗ + ζ ′′′k∗ − k| ≤ 3π0 (216)

We assume that k∗ is a generic point in the following sense.

Genericity condition. A point k∗ is called generic if it satisfies the relations

3k∗ �= k∗(mod 2π); (217)

|3ωn0 (k∗) − ωn(3k∗)| �= 0, |ω′
n0

(k∗) ± ω′
n(3k∗)| �= 0, n = 1, 2, . . .

|ωn0 (k∗) − ωn(k∗)| �= 0, |ω′
n0

(k∗) ± ω′
n(k∗)| �= 0, n �= n0 (218)

According to (188), we compose the currents J from eigenmodes {(ζ, n0), k} satisfying the
following condition

|k − ζk∗| ≤ π0, ζ = ±1 (219)

where π0 is small constant. In fact when β → 0, π0 in (219) can be replaced for almost
time-harmonic waves (188) with even a smaller number βπ0.
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We call a mode (n, k) indirectly excited if

ũ(0)
ζ,n(k, τ ) = 0 for all τ and ζ = ± (220)

According to (197), the modes with n �= n0 or |k − ζk∗| > π0 are indirectly excited. All
other modes are called directly excited, obviously directly excited modes must satisfy (219).
In other words, directly excited modes are excited through the linear mechanism whereas
indirectly excited ones are excited only through the nonlinear mechanism. Hence, based on
the medium linear and the FNLRs all the eigenmodes labelled with {(ζ, n), k} can be naturally
partitioned into two classes: the eigenmodes that are involved in the composition of the
probing excitation current and eigenmodes that are not. The first class coincides with the
directly excited modes and the second with the indirectly excited. The linear response of the
medium obviously involves only the eigenmodes presented in the source (current), i.e. ones
satisfying the condition (219), and nothing else. If we look now at the FNLR we find that
eigenmodes which do not satisfy the condition (219) generically are also presented in its
composition though with much smaller amplitudes.

As was shown in [17–19] stronger interactions must satisfy the group velocity matching
(73) and the frequency matching (74) conditions. It follows from (2) that

(∇ωn)(ζk∗) = ζ∇ωn(k∗), ζ = ±1 (221)

Since (213) holds, the group velocity matching condition (73) at the points ζ (i)k∗ takes the
form

∇[ζ ′ωn0 (ζ ′k∗)] = ∇[ζ ′′ωn0 (ζ ′′k∗)], ∇[ζ ′ωn0 (ζ ′k∗)] = ∇[ζ ′′′ωn0 (ζ ′′′k∗)] (222)

and by (221) it is always fulfilled. The frequency matching (FM) condition (74) can be written
in the form

φ�n(�k) = ζωn(k) − ζ ′ωn0 (k′) − ζ ′′ωn0 (k′′) − ζ ′′′ωn0 (k′′′) = 0 (223)

where (213) is assumed. Rather often fulfilment of the equality (223) is called the phase
matching condition (see [12, 37]), but we prefer to call it the frequency matching condition
and reserve the term phase matching condition for the condition (71)).

At the points ζ (i)k∗ according to ( 71) the relations (74) and (223) take the form

ζωn(ζ ′k∗ + ζ ′′k∗ + ζ ′′′k∗) = ζ ′ωn0 (ζ ′k∗) + ζ ′′ωn0 (ζ ′′k∗) + ζ ′′′ωn0 (ζ ′′′k∗) (224)

Note now that the sum ζ ′ + ζ ′′ + ζ ′′′ equals either ±1 or ±3. From (218) we obtain that
ζ ′ + ζ ′′ + ζ ′′′ cannot be ±3, and, hence,

n = n0, ζ ′k∗ + ζ ′′k∗ + ζ ′′′k∗ = ±k∗ (225)

The inequality (216) implies that for frequency matched interactions we have

|k − ζk∗| ≤ 3π0 (226)

Finally, condition (224) together with (2) and (218) imply that

n = n′ = n′′ = n′′′ = n0, ζ ′ + ζ ′′ + ζ ′′′ = ζ (227)

We will refer to a situation when the multi-index �n satisfies the relation (227) as the frequency
matched case (FM case), and to a situation when at least one of the relations (227) does not
hold as to non-frequency-matched case (non-FM case). Observe that for frequency matched
interactions, i.e. for the FM case, all significant mode interactions are restricted to a single
band n = n0. It is convenient to introduce the interaction phase φ�n(�k) for the special situation
of the FM case for which ζ ′′′ = −ζ , ζ ′ = ζ ′′ = ζ , namely when

�n = �n0 = ((ζ, n0), (ζ, n0), (ζ, n0), (−ζ, n0)) (228)
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The phase interaction function takes the following form

φ�n0 (�k) = ζ [ωn0 (k) − ωn0 (k′) − ωn0 (k′′) + ωn0 (k′′′)] (229)

We would like to remark that it turns out that the interaction integrals (211) in the non-FM
case are much smaller than in the FM case. Consequently, more significant nonlinear mode
interactions are expected to be frequency matched. The non-FM and FM cases will be discussed
in detail in the following two subsections.

3.1 Frequency matched interactions

In this section we consider the interaction integrals In̄,ζ ′,ζ ′′,ζ ′′′ in the frequency matched (FM)
case, i.e. if relations (227) are fulfilled. In section 3.2 we consider the same interaction integrals
in the non-FM case, i.e. when (227) does not hold. Comparing both cases we will see in
particular that the interactions in the FM case are stronger than those in the non-FM case.

Assuming that the relations (227) hold we introduce the following change of variables

k − ζk∗ = βq, k ′ − ζ ′k∗ = βq′, k′′−ζ ′′k∗ = βq′′, k ′′′ − ζ ′′′k∗ = βq′′′ (230)

or in shorter notation

�k = �ζ �k∗ + β�q (231)

where we use notation (177) and

�q = (q, q′, q′′, q′′′), �ζ �q = (ζq, ζ ′q′, ζ ′′q′′, ζ ′′′q′′′) (232)

Note that if (227) holds, the following two equalities are equivalent:

k′ + k′′ + k′′′ = k is equivalent to q′ + q′′ + q′′′ = q (233)

Obviously, there are three combinations of ζ ′, ζ ′′, ζ ′′′ satisfying (227) with ζ = 1 and three
more combinations with ζ = −1. It follows from (227) that two of the numbers ζ ′, ζ ′′, ζ ′′′

have to coincide with ζ , and the third one equals −ζ . Let us fix ζ and assume that ζ ′′′ = −ζ ,
ζ ′ = ζ ′′ = ζ , and denote

�ζ0 = (ζ, ζ, ζ, −ζ ) (234)

Two other integrals with ζ ′ = −ζ , ζ ′′ = −ζ can be reduced to the above case with the help
of the equalities (214), namely

In̄,ζ,ζ,−ζ = In̄,ζ,−ζ,ζ = In̄,−ζ,ζ,ζ (235)

Using (210) and (211) together with (235) and taking into account the estimates of non-FM
terms provided in the section 3.2 we obtain the following important representation related to
the FNLR

ũ(1,0)
n̄ (k, τ ) = 3In̄,ζ,ζ,−ζ (k, τ ) − ũ(1)

n̄ (J1; k, τ ) + O(�)O
(
u(1)

)
(236)

with the integral In̄,ζ,ζ,−ζ (k, τ ) given by

In̄,ζ,ζ,−ζ (k, τ )

= 1

�

∫ τ

0

∫
[−π, π ]2d

k′ + k′′ + k′′′ = k

exp

{
iφ�n0 (�k)

τ1

�

}
A�n0 (�k, τ1) dk′dk′′dτ1 (237)

where A�n , ũ(0)
ζ,n0

and φ�n0 are defined respectively by (212), (196) and (229), and �n0 is defined
by (228).
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Let us substitute for the factors ũ(1)
ζ,n0

in (212) their expressions in terms of the currents
j̃ (0)

n0,ζ
(k, τ ) and, consequently, the initial data ĥζ . The equalities (237), (188) and (180) together

with (230), (232) and (234) yield the following expression for the interaction integral in terms
of ĥζ :

βd In̄,ζ,ζ,−ζ (ζk∗ + βq, τ ) = 1
�

∫ τ

0

∫
q′+q′′+q′′′=q

exp

{
iφ�n0 (�ζ �k∗ + β�q) τ1

�

}
ψ3(τ1)A1(β�q0)ĥζ (q′)ĥζ (q′′)ĥ−ζ (q′′′) dq′ dq′′dτ1 (238)

where

A1(β�q) = Q̆�n0 ((�ζ0k∗ + β�q))�3(β�q) (239)

�3(β�q) = �(βq′)�(βq′′)�(βq′′′) (240)

�n0 is given by (228), ĥζ (q) is the same as in (189) and Q̆�n0 is defined by (179). Notice that the
domain of integration of the integral (238) allows q′ and q′′ to vary over the entire space Rd

rather than restricting them to just [−π, π ]d , which can be done since the function �3(β�q) by
its definition (240) and (190) is zero if either q′ or q′′ is outside of [−π, π]d for β ≤ 1. Recall
that the function �(k) was introduced to do exactly that in order to resolve the difference in
setting of the NLS with the quasimomentum k varying in the entire space Rd and the NLM
for periodic medium with k varying in [−π, π ]d .

Remark The Floquet–Bloch representation of a single-mode function

Jn(r, t) = 1

(2π )d

∫
[−π,π ]d

j̃ n(k)G̃n(r, k) dk (241)

with the coefficient j̃ n(k) satisfying j̃ n(k) = 0 for |k − k∗| ≥ π0 can be rewritten in the form

Jn(r, t) = βd 1

(2π)d

∫
Rd

j̃ n(k∗ + βq)G̃n(r, k∗ + βq) dq (242)

This identity shows that the coefficient j̃ n(k∗ + βq) has to have the scaling factor βd to
determine a function Jn(r, t) which is bounded uniformly in β. Exactly this kind of expression
is written in the left-hand side of (238). �

3.2 Non-frequency-matched interactions

There are two different possibilities for the non-frequency-matched (non-FM) case, i.e. when
(213) holds and (224) does not, which are described by the following two alternatives:

ζ ′ + ζ ′′ + ζ ′′′ = −ζ, n = n0 (243)

or

ζ ′ + ζ ′′ + ζ ′′′ = 3ζ or ζ ′ + ζ ′′ + ζ ′′′ = −3ζ or n �= n0. (244)

In the case (244) when k = ±3k∗ + βq or n �= n0 (225) does not hold, the FNLR is nonzero,
but the linear response is zero. In the case when (243) holds according to (216) the FNLR
with n = n0, |− ζk∗ −k| ≤ 3π0 is nonzero, but by (197) the linear response ũ(0)

ζ,n(k, τ ) is zero
when the linearly excited wave is unidirectional. Using (371) we obtain

ũ(1)
n̄ (k, t) = ũ(1,0)

n̄ (k, t) + O(�)O
(
u(1)

)
,

τ0

�
≤ t ≤ τ∗

�
(245)
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where ũ(1,0)
n̄ is the time-harmonic approximation for ũ(1)

n̄ defined by (210), (211) and, in view
of (181), we get

ũ(1,0)
n̄ = F̃ n̄

[(
u(0)

)3]
(k, τ ) (246)

Let us show that for the both non-FM cases (243) and (244) the FNLR ũ(1)
n̄ (k, t) is much

smaller than it its counterpart for the FM case, and the following estimation holds:

ũ(1)
n̄ (k, t) = O(�)O

(∣∣U(1)
∣∣), τ0

�
≤ t ≤ τ∗

�
(247)

If the estimation (247) holds then the FNLR ũ(1)
n̄ (k, t) in the non-FM case evidently is smaller

by the factor � than the FNLR for the FM case in (238) which is of order O(|U(1)|). Let us
look first at how the non-FM condition affects the magnitude of the interactions as described
by the interaction integral In̄,ζ ′,ζ ′′,ζ ′′′ in (211). Observe that if relation (227) does not hold, the
FM condition (224) for the phase φ�n(�k) does not hold either. Using this fact and integrating
the interaction integral (211) by parts m2 + 1 times as in [17, 20] we obtain

In̄,ζ ′,ζ ′′,ζ ′′′ (k, τ ) = 1

�

m2∑
m=1

�m Km(k, τ ) + O(�m2 ) (248)

The integral

Km(k, τ ) =
∫

[−π, π ]2d

k′+k′′+k′′′ = k

exp

{
iφ�n(�k)

τ

�

}
A�nm(�k, τ ) dk′ dk′′ (249)

is similar to the integral in (238), but since it has a factor �m in (248) it may affect only
the higher order approximations. Note that since the operators Km in (248) do not involve
integration with respect to τ they produce expressions in the relevant extended NLS involving
the time derivatives. The dominant term K1 is given by

K1(k, τ ) =
∫

[−π, π]2d

k′+k′′+k′′′ = k
eiφ�n (�k) τ

�

iφ�n(�k)
A�n(�k, τ ) dk′dk′′ (250)

The integral with respect to dk′ dk′′ is similar to In̄,ζ,ζ,−ζ but without the factor 1/�, therefore
K1(k, τ ) is of order � times (238) that is O(1).

3.2.1 Approximation of indirectly excited modes. For unidirectional excitation currents
the indirectly excited modes ((ζ, n0), k), i.e. the ones not satisfying relation (219), have zero
linear response, i.e. ũ(0)

n̄ (k, t) = 0, and in both cases (243) or (244) the principal part of the
corresponding amplitudes ũn̄(k, t) is given by (245). In particular, relation (247) holds, in
view of (248). For given h±, for the indirectly excited modes when n �= n0 or n = n0 and
|k − k∗| ≥ π0 we set

ŨZ ,n̄(k, t) = αe−iωn̄ (k)t ũ(1,0)
n̄ (k, t) (251)

with the FNLR amplitudes ũ(1,0)
n̄ being defined by (210) and (211). Then using (246) we can

recast ŨZ ,n̄(k, t) in the form

ŨZ ,n̄(k, t) = αe−iωn̄ (k)( τ
�

t)ū Z ,n̄(k, t), ũ Z ,n̄(k, t) = F̃n̄
[(

u(0)
)3]

(k, τ ) (252)

with formula (245) providing an estimate for the difference between the modal coefficient of
the exact solution of the NLM and the approximation ū Z ,n̄(k, t).
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The above discussion shows that the amplitudes of indirectly excited modes are determined
mainly by the FNLR. The amplitudes of indirectly excited modes are relatively small and are
of the order O(�α)O(U(1)).

4. Asymptotic analysis of the FNLR

In this section we write expansions of the FNLR of the NLM in β up to the order σ = ν − 2
with given ν using Taylor expansions of the integrands of the interaction integral (238).
More delicate are expansions involving the phase function. The corresponding asymptotic
expansions in the weakly dispersive case involve powers of βν+1/�; in the strongly dispersive
case (28) we use expansions with respect to the parameter θ = �/β2. Then we analyse the
nonlinear interaction integrals and the corresponding interaction phases φ�n(�k) and φ�n0 (�k)
defined by (223) and (229) and obtain relatively simple asymptotic expansions for the modal
form of the FNLR. Those modal expansions can be directly related to the FNLR of a proper
NLS and, at the same time, provide a basis for estimating the difference between a solution
to the NLM and its nonlinear Schrödinger approximation.

In the weakly dispersive case, when (30) holds, the asymptotic analysis of a solution to
the NLM is carried out straightforwardly based on the Taylor expansion of the oscillat-
ing factor. In the strongly dispersive case, when (28) holds, we apply the stationary phase
method.

4.1 Interaction integrals

With the interaction integral In̄,ζ ′,ζ ′′,ζ ′′′ defined by (211) with

�ζ = (ζ, ζ ′, ζ ′′, ζ ′′′) = �ζ0 = (ζ, ζ, ζ,−ζ ) and n = n0 (253)

as in (234), (237) turns into the integral In̄,ζ,ζ,−ζ defined by (238). To study the integral (238)
we approximate the phase function φ�n0 (�ζ0k∗ + β�q) defined by (229) by a polynomial phase
function �(ν) of degree ν (for instance, quadratic when ν = 2):

�(ν)(�ζ0, β�q) = ζ
[
γ(ν)(ζβq) − γ(ν)(ζβq′) − γ(ν)(ζβq′′) + γ(ν)(−ζβq′′′)

]
(254)

The polynomial γ(ν) is defined by (200) and (203) based on ωn0 (k). Let us consider now the
phase function (254) under the constraint (233) and denote

q′′′(�q) = q − q′ − q′′, �q0 = (q, q′, q′′, q − q′ − q′′) (255)

that is

�(ν)(�ζ0, β�q) = ζ [γ(ν)(ζβq) − γ(ν)(ζβq′) − γ(ν)(ζβq′′) + γ(ν)(−ζβ(q − q′ − q′′))] (256)

An important property of the phase function �(ν) in the frequency matched case is given by
the following formula:

1

β2
�(ν)(�ζ0, β�q) = ζ

2
[q · ω′′

n0
q − q′ · ω′′

n0
q′ − q′′ · ω′′

n0
q′′ − q′′′ · ω′′

n0
q′′′]

+ O(β|�q−�q �|2|�q|), ω′′
n0

= ω′′
n0

(k∗ + q), �q � = (q, q, q, −q) (257)

This formula shows that the principal part of the phase function 1/β2�(ν)(�ζ0, β�q) does not
depend on β and is the same as the principal part of a similar phase function for the NLS. This
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explains the importance of the parameter θ in (24). Note that for ν = 2 only the quadratic part
of �(2) can be nonzero.

4.1.1 Approximation of the modal susceptibility. In this section we introduce the ex-
pansion producing powers βl2 in the structured power series (169). To get an expansion
for the interaction integral in (238) we need to have an expansion for function A1(β�q)
as defined by (239). To have an expansion for A1(β�q) we need, in turn, an expansion
for one of its factors, namely the modal susceptibility Q̆�n0 (�ζ0k∗ + β�q) defined by (179).
In fact, the coefficients of the expansion of the modal susceptibility determine the coeffi-
cients of a corresponding NLS. The resulting approximation polynomials in �q applied in
the Fourier representation lead to differential operators which are present in the NLS (see
section 8.3.1).

We use the Taylor expansion in β for the modal susceptibility Q̆�n0 (�ζ0k∗ + β�q), namely

Q̆�n0 (�ζ0k∗ + β�q) = Q̆�n0 (�ζ0k∗) + β Q̆′
�n0

(�ζ0k∗, �q) + β

2

2

Q̆′′
�n0

(�ζ0k∗, �q) + · · ·

+ βν−1

(ν − 1)!
Q̆(σ )

�n0
(�ζ0k∗, �q) + O(βσ+1) (258)

where Q̆( j)
�n0

(�ζ0k∗, �q) is a j-linear symmetric form of �q , in particular

Q̆′
�n(�ζ0k∗, �q) = ∇�q Q̆�n0 (�ζ0k∗) · �q, Q̆′′

�n(�ζ0k∗, �q) = ∇2
�q Q̆�n0 (�ζ0k∗)

... (�q 2), . . . (259)

We introduce the Taylor polynomial p[σ ]
T,ζ (β�q) of Q̆�n0 of degree σ by the formula

p[σ ]
T,ζ (β�q) =

σ∑
j=0

1

j!
Q̆( j)

�n0
(�ζ0k∗, β�q) =

σ∑
j=0

β j

j!
Q̆( j)

�n0
(�ζ0k∗, �q)

(260)�ζ0 = (ζ, ζ, ζ, −ζ ), �n0 = ((ζ, n), (ζ, n0), (ζ, n0), (−ζ, n0))

Now we consider vectors and polynomials with a smaller number of variables, namely we
eliminate q using the relation q = q′+q′′+q′′′. Given a vector �q = (q, q′, q′′, q′′′) we introduce
vectors

�q � = (q′ + q′′ + q′′′, q′, q′′, q′′′), �q � = (q′, q′′, q′′′) (261)

and the polynomial

p[σ ]
ζ (�q �) = p[σ ]

T,ζ (�q �), ζ = ± (262)

Observe that the polynomial p[σ ]
ζ (β�q �) defined by (262) has the following m-homogeneous

terms

p[σ ]
ζ (β�q �) =

σ∑
j=0

βm pm,ζ (�q �), pm,ζ (�q �) = 1

m!
Q̆(m)

�n0
(�ζ0k∗, �q �) (263)

which evidently depend only on q′, q′′, q′′′. In particular, for σ = 0 we have

p0,ζ = p[0]
ζ = Q̆�n0 (�ζ0k∗) = Qζ = Q±, ζ = ±1 (264)

Formulas (263) and (259) imply the following representation for the linear form
p1,ζ (�q �):

p1,ζ (�q �) = ∇�q � Q̆�n0 (�ζ0k∗) · �q � + ∇q Q̆�n0 (�ζ0k∗) · (q′ + q′′ + q′′′) (265)
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Recasting formula (265) in terms of the gradients ∇q′ , ∇q′′ we get

p1,ζ (�q �) = ∇q′ Q̆�n0 (�ζ0k∗) · q′ + ∇q′′ Q̆�n0 (�ζ0k∗) · q′′ + ∇q′′′ Q̆�n0 (�ζ0k∗) · q′′′

+ ∇q Q̆�n0 (�ζ0k∗) · (q′ + q′′ + q′′′)

implying

p1,ζ (�q �) = a11,ζ · q′ + a12,ζ · q′′ + a13,ζ · q′′′ (266)

with vectors a11,ζ , a12,ζ , a13,ζ defined by

a11,ζ = ∇q′ Q̆�n0 (�ζ0k∗) + ∇q Q̆�n0 (�ζ0k∗), a12,ζ = ∇q′′ Q̆�n0 (�ζ0k∗) + ∇q Q̆�n0 (�ζ0k∗)
(267)

a13,ζ = ∇q′′′ Q̆�n0 (�ζ0k∗) + ∇q Q̆�n0 (�ζ0k∗)

The quadratic polynomial p2,ζ (�q �) has the following representation

p2,ζ (�q �) = ∇2
�q � Q̆�n0 (�ζ0k∗)

... (�q �)2 + 2∇�q �∇q Q̆�n0 (�ζ0k∗)
... (q′ + q′′ + q′′′)(�q �)

+ ∇2
q Q̆�n0 (�ζ0k∗)

... (q′ + q′′ + q′′′)2 (268)

4.1.2 Asymptotic expansion in the weakly dispersive case. We now study the asymptotic
expansions of the interaction integral (238) in the weakly dispersive case when (30) holds or,
in other words, when the dispersion parameter θ satisfies the inequality

θ = �

β2
≥ θ0 with a fixed θ0 > 0 (269)

In fact, the most interesting is the borderline case which corresponds to the classical nonlinear
Schrödinger scaling (26), namely α ∼ � ∼ β2. To get the integral expansions in β up to the
order σ = ν − 2 we need the corresponding expansions for the involved integrands A1(β�q)
which can be found as follows. Using (239) and (258) and taking into account that for small
β, in view of (190), �(βq) = 1 we obtain

A1(β�q) = p[σ ]
T,ζ (β�q) + O(βσ+1), σ = 0, . . . , ν − 2 (270)

We have

φ�n(�ζ0�k∗ + β�q) = �(ν)(�ζ0, β�q) + O(βν+1) (271)

and

exp

{
iφ�n(�ζ0�k∗ + β�q)

τ1

�

}
= exp

{
i�(ν)(�ζ0, β�q0)

τ1

�

}
exp

{
i
τ1

�
O(βν+1)

}
(272)

where we have a standard series expansion

exp

{
i
τ1

�
O(βν+1)

}
= 1 + i

τ1β
ν+1

�
O(1) + · · · (273)

This expansion leads to (169). We conclude that in the interaction integral (238) we can write

exp

{
iφ�n(�ζ0�k∗ + β�q0)

τ1

�

}
= exp

{
i�(ν)(�ζ0, β�q0)

τ1

�

}{
1 + O

(
βν+1

�

)}
(274)



196 A. Babin and A. Figotin

Recall that, by (269), in the weakly dispersive case βν+1τ1/� � 1 when ν ≥ 2. Using (270)
we infer from (238) that

βd In̄,ζ,ζ,−ζ (ζk∗ + βq, τ ) = 1

�

∫ τ

0

∫
R2d

exp

{
i�(ν)

(�ζ0, β�q0
)τ1

�

}{
1 + O

(
βν+1

�

)}
×ψ3(τ1)

(
p[σ ]

T,ζ (β�q) + O(βσ+1)
)
(ĥζ (q′)ĥζ (q′′)

× ĥ−ζ (q′′′(�q)))dq′dq′′dτ1 + O

(
βN�−d

�

)
(275)

Remark The term O(βN�−d/�) in (275) arises from replacing � by 1. When all |q′|, |q′′|,
|q′′′| are smaller than π02β we have �(βq′) = �(βq′′) = �(βq′′′) = 1 and this replacement
creates no error at all. When one of arguments, for example |q′′′|, is greater than π0/2β then, by
(206) ĥ(q′′′) is very small for large values of arguments. Using these observations we obtain the
term O(βN�−d/�) in (275). Note that since N� can be chosen arbitrary large and the relations
(29) or (31) hold we assume that N� is large enough to yield the following inequalities

O

(
βN�−d

�

)
� O

(
βσ+1

�

)
, O

(
βN�−d

�

)
� O

(
βν+1

�2

)
(276)

Under this condition this term in (275) is negligible. Hence, if one replaces � by 1 the error
is negligible. �

4.2 Approximation of the interaction integral

Here we approximate the interaction integral In̄,ζ,ζ,−ζ defined by (238) by a simpler integral
I (σ )
n̄,ζ,ζ,−ζ which is introduced below. Using this approximation we will be able to relate solutions

to the NLM and the NLS.
The approximation I (σ )

n̄,ζ,ζ,−ζ , σ = 0, 1, 2, is constructed by the following alterations in the
integral In̄,ζ,ζ,−ζ represented by (238). In the expression A1(β�q) defined by (239) the modal
susceptibility Q̆�n0 ((�ζ0k∗ + β�q)) is replaced with the polynomial p[σ ]

T,ζ (β�q) defined by (260),
and the cut-off function � defined by (190) is replaced by 1. Thus, we introduce the integral
I (σ )
n̄,ζ,ζ,−ζ by the following formula

βd I (σ )
n̄,ζ,ζ,−ζ (ζk∗ + βq, τ ) = 1

�

∫ τ

0
dτ1

∫
R2d

exp

{
i�(ν)

(�ζ0, β�q0
)τ1

�

}
p[σ ]

T,ζ (β�q0)

×ψ3(τ1)ĥζ (q′)ĥζ (q′′)ĥ−ζ (q − q′ − q′′) dq′ dq′′, (277)

In particular, for σ = 0 we have

βd I (0)
n̄,ζ,ζ,−ζ (ζk∗ + βq, τ ) = 1

�

∫ τ

0
dτ1

∫
R2d

exp

{
i�(ν)(�ζ0, β�q0)

τ1

�

}
Q̆�n0 (�ζ0k∗)

×ψ3(τ1)ĥζ (q′)ĥζ (q′′)ĥ−ζ (q − q′ − q′′) dq′dq′′ (278)

Let us show now that I (σ )
n̄,ζ,ζ,−ζ (ζk∗ + η, τ ) provides a good approximation to In̄,ζ,ζ,−ζ (ζk∗ +

η, τ ) in the weakly dispersive case when (30) and (269) hold (strongly dispersive case is
discussed in section 4.3).

Comparing (275) with (277) and using (276) we obtain the following estimate

βd In̄,ζ,ζ,−ζ (ζk∗ + βq, τ ) = βd I (σ )
n̄,ζ,ζ,−ζ (ζk∗ + βq, τ ) + O

(
βν+1

�2

)
+ O

(
βσ+1

�

)
. (279)
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Now we use the above results to estimate the leading term ũ(1,0)
n̄ as in (210) of the expansion

(175). Applying (210), (214), (248) and (279) we get the following formula for σ ≤ ν − 2

βd ũ(1,0)
n̄ (ζk∗ + βq, t) + βd ũ(1)

n̄ (J1; ζk∗ + η, t)

= −3βd I (σ )
n̄,ζ,ζ,−ζ (ζk∗ + βq, τ ) + O

(
βν+1

�2

)
+ O

(
βσ+1

�

)
+ O(1) (280)

(Note that leading expressions in (280) are of order �−1.)

4.3 The strongly dispersive case: rectifying change of variables and critical points
of the interaction phase

In the strongly dispersive case when (28) holds, that is θ = �/β2 � 1, we cannot apply the
elementary approach of section 4.2. Still the NLM–NLS approximation is valid with the same
NLS or ENLS, but the mathematical treatment is different. To provide applicability on very
long time intervals of order 1/� � β−2 where linear dispersive effects are much stronger, we
have to match the linear Maxwell equation and the linear Schrödinger equation with a higher
precision. This is made by applying a rectifying change of variables.

The rectifying change of variables Y is a one-to-one mapping of a small vicinity of a point
k∗ onto a similar vicinity, i.e.

ξ = Y −1(η), η = Y (ξ) if |η| ≤ 2π0, η = Y (ξ) if |ξ| ≤ 2π0 (281)

where π0 is a small constant. It converts the dispersion relation ωn0 (k∗ + η) into its Taylor
polynomial γ(ν)(k∗; η) at k∗ of the degree ν, i.e.

ωn0 (k∗ + Y (ξ)) = γ(ν)(k∗; ξ) = γ(ν)(ξ) (282)

We will refer to coordinates ξ as rectifying coordinates. This rectifying change of variables
exactly reduces the linear part of the NLM to the linear part of the NLS for single doublet
excitations localized around k∗. The rectifying change of variables Y −1

ζ (η) allows us to es-
tablish an exact equivalence between the dynamics of the NLM and the NLS in the linear
approximation (α = 0) for arbitrary long times.

The rectifying change of variables Y (ξ) satisfying (282) exists by the implicit function
theorem and its power series expansions can be explicitly found. The rectifying change of
variables Y (ξ) is close to the identity, and if

ω′
n0

(k∗) �= 0 (283)

then

Y (ξ) = ξ + O(|ξ|ν+1), Y −1(η) = η + O(|η|ν+1), if |η| ≤ 2π0, |ξ| ≤ 2π0 (284)

If (283) does not hold, but instead we have

ω′
n(k∗) = 0, det ω′′

n̄(k∗) �= 0 (285)

then Y (ξ) exists by the Morse lemma [38], section 2.3.2, and

Y (ξ) = ξ + O(|ξ|ν), Y −1(η) = η + O(|η|ν) if |η| ≤ 2π0, |ξ| ≤ 2π0 (286)

In this paper we assume that (283) holds. The case (285) in many respects is similar, but
requires somewhat different treatment of higher order terms of asymptotic expansions. In the
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strongly dispersive case (28) we assume that

ωn0 (±k∗) �= 0, det ω′′
n0

(±k∗) �= 0 (287)

We use the stationary phase method along the lines of [17–19] to find an asymptotic expan-
sion for the interaction integral (238) with respect to the small parameter θ . According to the
method, we need to find the critical points of the phase (178) under the restriction (233) with
respect to the variables q′, q′′. The critical points are the solutions to the following system of
equations

∇q′φ�n(�ζk∗ + �q) = 0, ∇q′′φ�n(�ζk∗ + �q) = 0 (288)

Taking into account the inversion symmetry identities (140) we find that all small solutions to
the system (288) together with (233) and (253) are exhausted by the following vectors

�q � = (q, q, q, −q), i.e. q′ = q′′ = q, q′′′ = −q (289)

with q being arbitrary (but small). Remarkably, introduction of the rectifying change of vari-
ables does not affect the critical points. For any fixed and sufficiently small q the interaction
phase φ�n(�ζk∗ + �q) has a unique critical point �q� described by (289).

Using this fact and (286) we can prove that the estimates proven for the weakly dispersive
case hold in the strongly dispersive case too. Note that the magnitude of the nonlinear correc-
tions, in particular FNLR U(1) on time intervals which satisfy (15) is estimated as follows:

O
(∣∣U(1)

∣∣) = O(�d−1)O(|J|3) in the dispersive case θ−1 � ‖ω′′
n0

(k∗)−1‖,
(290)

O
(∣∣U(1)

∣∣) = O(�−1)O(|J|3) in the weakly dispersive case θ−1 � ‖ω′′
n0

(k∗)‖−1

When U = U(r, t) is a function of r, t we write O(|U|) for a function of r, t such that it
is bounded in some sense when U is bounded, assuming that O(|U|) is homogeneous in U
(in particular O(|βqU|) = βq O(|U|)). We do not want to elaborate and get more specific on
the definition of O(|U|) since a mathematically rigorous discussion of this subject would
require us to introduce concepts and technicalities that, though important for a mathematical
justification, are not essential for presenting the results of our analysis. According to (290)
and (16) in the weakly dispersive case

O
(
α
∣∣U(1)

∣∣) = O(1) (291)

whereas in the strongly dispersive case O(α|U(1)|) = O(�d ) is much smaller. Therefore, the
error terms in the right-hand sides in estimates (46), (49), (59), (65), (94), (106) and (112) now
should include the extra factor �d . For example, in the strongly dispersive case (112) takes the
form

U − UZ = O(�d )[O(β2) + O(�)] (292)

The definition of excitation currents now includes the rectifying change of variables

Yζ (ξ) = ζYζ (ζ ξ ), ζ = ±
namely in (188)

j̃ (0)
ζ,n0

(k, τ ) = −�β−dψ0(τ )�(k − k∗)ĥζ

(
1

β
Y −1

ζ (k − ζk∗)

)
(293)

and in (185)

j̃ (1)
ζ,n0

(ζk∗ + Yζ (βq), τ ) = Ĵ (1)
Z ,ζ (βq, τ ) (294)
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The relation between NLS and NLM, instead of (58), takes the form

Udir
Z ,n0

(r, t) = 1

(2π )d

∫
[−π,π ]d

�(η)[Ẑ+(Y −1
+ (η), t)G̃+,n0 (r, k∗ + η)

+ Ẑ−(Y −1
− (η), t)G̃−,n0 (r, −k∗ − η)] dη (295)

5. Tailoring the NLS to approximate the NLM

In this section we introduce an NLS that is tailored to approximate the NLM. The NLSs we
are interested in are the two equations (36) and (37) or their d-dimensional analogues (100)
and (101). The two equations correspond to the two values of ζ = ±1 = ±.

The NLS (36) involves some constants that are to be related to the NLM. To do that let us
construct first a linear part of NLS related to the linear part of NLM. We begin with picking a
ν = 2, 3 or 4 and then we introduce the Taylor polynomial γ(ν)(η) of the order ν of the function
ωn0 (k) at the point k∗ as defined by (200). The case ν = 2 corresponds to the classical NLS,
and ν = 3, 4 correspond to an ENLS. For these three cases we have respectively

γ(2)(η) = ωn0 (k∗) + ω′
n0

(k∗)(η) + 1

2
ω′′

n0
(k∗)(η2)

γ(3)(η) = ωn0 (k∗) + ω′
n0

(k∗)(η) + 1

2
ω′′

n0
(k∗)(η2) + 1

6
ω′′′

n0
(k∗)(η)3 (296)

γ(4)(η) = ωn0 (k∗) + ω′
n0

(k∗)(η) + 1

2
ω′′

n0
(k∗)(η2) + 1

6
ω′′′

n0
(k∗)(η)3 + 1

24
ω′′′′

n0
(k∗)(η)4

Substituting η j = −i∂ j into the polynomial γ(ν)(η) we obtain the differential operator
γ(ν)[−i �∇r], in particular:

γ(3)[−i �∇r]V = ωn0 (k∗)V − i
∑

m

γm∂m V − 1

2

∑
m,l

γml∂m∂l V + i

6

∑
m,l, j

γml j∂m∂l∂ j V (297)

where γm , γml and γml j are the real-valued coefficients of the linear form ω′
n0

(k∗), the quadratic
form ω′′

n0
(k∗) and the cubic form ω′′′

n0
(k∗), respectively. In the simplest classical case when

ν = 2 and the problem is one-dimensional, i.e. d = 1, as in (37), the operator γ(2)(−i∂x ) has
the form

γ(2)(−i∂x )V = ωn0 (k∗)V − iω′
n0

(k∗)∂x V − 1

2
ω′′

n0
(k∗)∂2

x V (298)

with the symbol γ(2)(η) being defined by (296). The polynomial γ(ν)(η) is called the symbol
of the operator γ(ν)[−i �∇r].

Let us introduce a general linear Schrödinger equation of the form

∂t Z (r, t) = −iγ(ν)[−i �∇r]Z (r, t), Z (r, t)|t=0 = hβ(r), hβ(r) = h(βr) (299)

This can be solved exactly in terms of the Fourier transform, namely

Ẑ (η, t) = ĥβ(η) exp{−iγ(ν)(η)t} (300)

The properties of the Fourier transform are discussed in section 8.2 (see equation (425) for its
definition). Let us also consider the classical nonlinear Schrödinger equation

∂t Z+ = −iγ(2)[−i �∇r]Z+ + απ Q+|Z+|2 Z+, Z+(r, t)|t=0 = h+(βr) = h+,β(r) (301)



200 A. Babin and A. Figotin

where Q+ is a complex constant and the factor απ = 3α(2π )2d is introduced for notational
consistency with the related NLM (we have used (38) to simplify (36) and (37)).

The simplest extended nonlinear Schrödinger equations are given by (98) and (99); they
have the form

∂t Zζ = −iζγ(ν)[−iζ �∇r]Zζ + απ p[ν−2]
ζ [−i �∇r]

(
Z2

ζ Z−ζ

)
Zζ (r, t)|t=0 = hζ (βr) = hζ,β(r), ζ = ± (302)

where p[σ ]
ζ [−i �∇r](Z2

ζ Z−ζ ) is a linear differential operator with constant coefficients of the
order σ = ν − 2 with p[σ ]

± (�q�) being defined by (262). This operator acts on the factors of the
product Z2

ζ Z−ζ . The action of such an operator is defined by (434). Note that this operator
acts on all factors of the product Z2

ζ Z−ζ = Zζ Zζ Z−ζ , and that the variables q′, q′′, q′′′ of the
symbol are replaced, respectively, by differentiations of the first, second and third factor. In
particular, according to (264)

p[0]
ζ [−i �∇r]

(
Z2

ζ Z−ζ

) = Qζ Z2
ζ Z−ζ , ζ = ± (303)

where the coefficient Qζ is given in (264). The first-order operator p[1]
ζ = p[0]

ζ + p1,ζ where
p[0]

ζ is given above and the symbol of p1,ζ is defined by (266), i.e.

p[1]
1,ζ (�q �) = a11,ζ · q′ + a12,ζ · q′′ + a13,ζ ·q′′′ (304)

The corresponding operator acts as follows

p[1]
1,ζ [−i �∇r]

(
Z2

ζ Z−ζ

) = p[1]
1,ζ [ �∇r](Zζ Zζ Z−ζ )

= Zζ Z−ζ (a11,ζ + a12,ζ ) · ∇r Zζ + Z2
ζ a13,ζ ·∇r Z−ζ (305)

where the vectors a11,ζ , a12,ζ and a13,ζ are defined in (267); the components of the vectors
are complex. Observe that the extended NLS (302) turns into the classical one (301) if we set
ν = 2, σ = 0 and use (38).

It is useful to consider the following scaled version of the function Z±(r, t):

Zβ,ζ (r, t) = Zζ

(
r
β

, t

)
, ζ = ± (306)

The relation (306) between Z±(r, t) and its scaled version Zβ,±(r, t) implies the following
relation between their Fourier transforms as defined by (425):

Ẑ ζ (η, t) =
∫

Rd

e−iβr· 1
β
η Zβ,ζ (βr, t) dr = β−d Ẑβ,ζ

(
η

β
, t

)
(307)

It is convenient to recast the general ENLSs (302) as a system for the rescaled quantities
Zβ,ζ (r, t), ζ = ±, namely

∂t Zβ,ζ = −iγ(ν)[−iζβ∇r]Zβ,ζ + απ p[σ ]
ζ [−iβ∇r]

(
Z2

β,+ Zβ,−ζ

)
,

(308)
Zβ,ζ (r, t)|t=0 = hζ (r)

Obviously, the initial data for the rescaled equation do not depend on β, but the coefficients
explicitly depend on β.

5.1 Total error of the approximation of the NLM by an NLS

In this section we outline how we estimate the total error of the approximation of the NLM with
an NLS. For simplicity we discuss the case when the NLM contains purely cubic nonlinearity
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and we use a second-order NLS (that is with the order of the linear part ν = 2) for the
approximation.

An exact solution U(r, t) of the NLM corresponding to an excitation current composed
from a doublet of modes, as in (186) and (188), splits naturally into two parts corresponding
to the directly and indirectly excited modes. The first part involves the directly excited modes
(excited through the linear medium response) with modal amplitudes Uζ,n(k∗, t) with n =
n0, |k − ζk∗| ≤ π0 as in (219). Their magnitude is O(1). The second part consists of the
indirectly excited modes, which are excited solely through the nonlinear medium response,
and this part involves modes with either n �= n0 or |k − ζk∗| > π0. As was explained in section
3.2 the magnitude of the indirectly excited modes is estimated by O(�). The approximate
solution includes both directly and indirectly excited modes. We take a solution Zζ (r, t) of
the NLS (100) and (101) and consider an exact solution U(r, t) related to Zζ (r, t) through
properly chosen excitation currents. The currents are based on the initial data of the NLS
(see section 5.2). We define the approximate solution UZ (r, t) of the NLM by (58), (68)
and (69).

The nonlinear interactions of the directly excited modes with themselves are of order O(1) as
in the case of classical NLS scaling (26) and they, of course, are taken into account. We approx-
imate the directly excited modes by appropriate solutions of the NLS. To match/correspond
the NLM and the NLS we use in concert the following two options: (i) setting up the excitation
currents; (ii) choosing the coefficients of the NLS. The linear part of the NLS is obtained based
on the Taylor expansion of the dispersion relation, see (297). We choose the coefficients at the
nonlinear terms of the NLS so that the FNLR of the NLM exactly matches the FNLR of the
NLS.

The following sources of approximation error exist. First, we replace the causal integral
nonlinear operators which enter the operator FNL by the instantaneous operators described
by the nonlinear susceptibilities, see section 6 and [39] for details. This is necessary since
the nonlinearity in the NLS is instantaneous. Second, we neglect the impact of indirectly
excited modes onto directly excited. More precisely, we throw away all terms in (181) with
n′ �= n0, n′′ �= n0, n′′′ �= n0. This is necessary if we consider dynamics of modal amplitudes
of only one band n = n0 independently of all other bands. Third, we replace exact dispersion
relation ωn0 (k) by its Taylor polynomial at k = k∗. Fourth, we replace frequency-dependent
susceptibilities by their values at ω = ωn0 (k∗); this is necessary since the nonlinearity in the
NLS is not frequency-dependent.

Note that all mentioned replacements and modifications affect the FNLR in exactly the
same way as the exact solution. The only difference is that for the FNLR the operators we
mentioned above are applied to the linear approximation U(0) whereas for the exact solution
they act on U itself. This explains why the choice of the coefficients of the NLS based on
matching the FNLR of the NLS and NLM gives a good approximation of exact solutions of
NLM even in the case of classical NLS scaling � ∼ α ∼ β2 for times t ∼ 1/�. Since we match
only the zero and the first-order terms in α (the linear response and the FNLR), the higher
order terms of order α2 could create an additional discrepancy of order one, but the effect of
the higher order terms is effectively eliminated since we approximate the solution of the NLM
by the exact solution of the NLS rather than by the principal terms of the expansion in α of the
solution of the NLS, see section 7 for details.

The total approximation error of the approximation of the exact solution U(r, t) by the
approximate solution UZ (r, t) defined by (58), (68) and (69) on the time interval (97) in the
case ν = 2 consists of the following components:

(i) the error of the nonlinear Schrödinger approximation of the directly excited modes on
the interval 0 ≤ t ≤ τ∗/� is estimated by O(β);
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(ii) the error of the zero-order time-harmonic approximation (395) to the causal integral is
estimated by O(�);

(iii) the error of the FNLR approximation ((68) and (69)) of the indirectly excited modes, in
particular through non-FM interactions, is estimated by O(�);

(iv) the error from the impact of indirectly excited modes onto the directly excited modes
(interband interactions) is estimated by O(�);

(v) the error of the polynomial approximation of the dispersion relation (271) in the
weakly dispersive case is O(β3/�), which gives O(β) in the case of classical nonlin-
ear Schrödinger scaling.

The inequality t ≤ τ∗/� in (97) ensures that our analysis is applicable, see (418). Conse-
quently the total error of approximation of a solution to the NLM by a solution to the classical
NLS when ν = 2 is of order

O(β) + O(�) (309)

The error estimate in item (i) in the above list is addressed below in this section. The error
estimate in item (ii) is discussed in section 6.2. The error estimate in item (iii) was discussed
in sections 1.2 and 3.2. The error in item (iv) caused by interband interactions includes higher
order terms of power expansions (11) and will be considered in a separate paper. The error in
item (v) was discussed in section 4.1. There are also the negligible errors O(θ N3+1) in the case
(28) when θ = �/β2 < 1 with arbitrary large N3 and the error from the contribution of the
cut-off function � of the order O(βN�−d ) (see Remark in section 4.1.2) where N� is arbitrarily
large; these errors are technical by nature and are negligible at any order of accuracy.

Reduction of the errors by means of using an ENLS instead of a classical NLS was discussed
in section 1.2.

5.2 The linear response and the FNLR for an NLS

To provide a basis for relating the NLM and an NLS using their linear and first nonlinear
responses, we need to construct for the general NLS (302) the linear and the first nonlinear
responses along the same lines as we did for the NLM. For that we: (i) single out the linear
part of the general NLS (302) and carry out its spectral analysis; (ii) introduce the source
term in the NLS which replaces the initial condition; (iii) study the corresponding solution
using the framework we developed for the NLM. The source term is introduced based on the
initial data of the NLS so that it: (i) generates the same solution as the initial data; (ii) has
the form of an almost time-harmonic function consistent with (158), (163) and (188). The
importance of the relation between the excitation current for the NLM and initial data for
the NLS can be seen from the following simple observation. When we compare solutions
of the two differential equations the difference of the two solutions originates from two
sources: the difference between the equations and the difference between the initial data. Even
when the equation is the same, the difference in the solutions is proportional to the difference
of the initial data. Since we study approximations of the solutions of the NLM by solutions of
the NLS with high precision, and study effects of additional terms in the ENLS on the accuracy
of approximation, we want to completely eliminate the source of differences that come from
the initial data. This is not trivial since the initial data h(r) for the NLS are instantaneously
prescribed at t = 0 and their counterpart (the excitation currents J(r, t) for the NLM) are
defined on a time interval 0 ≤ t ≤ τ0/�. That requires consideration of technical issues, but
the bottom line is that exact matching is possible for an arbitrary choice of h. We recall also
that the constructed excitation current J(r, t) vanishes for t ≥ τ0/� and only after that time
can we compare solutions of the NLM and the NLS.
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In the subsequent treatment of the NLS we use the modal decomposition for its analysis.
Since the linear part of the NLS (302) is the differential operator −iγ(ν)[−i �∇r] with constant
coefficients, the corresponding eigenmodes are just plane waves. Consequently, here we use
plane waves and the standard Fourier transform (425) instead of the Bloch modes and the
Floquet–Bloch transform.

5.2.1 Source term for the NLS. First, let us show how the solution to the initial value
problem (302) can be obtained as a solution to a similar differential equation with zero initial
data and a source term JZ ,ζ (r, t) based on hζ (βr), ζ = ±. This form of the solution would be
consistent with the form of the NLM (3). The general form of such a nonlinear equation with
a source is provided by (56). Hence, in the case of (302) the relevant evolution equation with
a source is

∂t Vζ = −iζγ(ν)[−iζ �∇r]Vζ + απ p[σ ]
ζ [−i �∇r]

(
V 2

ζ V−ζ

) − JZ ,ζ (r, t), Vζ = 0 for t ≤ 0 (310)

and we want to find the source JZ ,ζ (r, t) so that the solution Vζ (r, t) to (310) would be equal
to Zζ (r, t) for t ≥ τ0/�. The final form of the desired source JZ ,ζ (r, t) is provided by the
formula (313), and it is constructed as follows. We begin with picking up a smooth real-valued
function ψ(τ ) having the same properties as the function defined by (195) and (191), namely

0 ≤ ψ(τ ) ≤ 1, ψ(τ ) = 0, τ ≤ 0; ψ(τ ) = 1, τ ≥ τ0 > 0 (311)

Then taking the functions Zζ (r, t) which solve problem (302) we introduce

Vζ (r, t) = ψ(�t)Zζ (r, t) (312)

We can readily verify that Vζ is a solution of equation (310) with

JZ ,ζ = −�ψ ′(�t)Zζ − απ (ψ − ψ3)p[σ ]
ζ [−i �∇r]

(
Z2

ζ Z−ζ

)
(313)

Evidently, in view of (311) and (312) we have

JZ ,ζ (r, t) = 0 when t ≥ τ0/� or t ≤ 0, ζ = ± (314)

Vζ (r, t) = Zζ (r, t) when t ≥ τ0/� (315)

Notice that the equalities (312), (315) and (314) establish the relation between the NLS as
the initial value problem (302) and the NLS (310) with a source term. According to (315) for
t ≥ τ0/� the definition (58) can be rewritten in the form

Udir
Z ,n0

(r, t) = 1
(2π)d

∫
[−π,π]d �(η)

(316)[
V̂+

(
η, t

)
G̃+,n0 (r, k∗ + η) + V̂−

(
η, t

)
G̃−,n0 (r, −k∗ − η)

]
dη

where Vζ is the solution of (310).
Notice that, similarly to solutions of the NLM, the solution Zζ , ζ = ± of the NLS (302)

admits the following expansion

Zζ = Z (0)
ζ + αZ (1)

ζ + α2 Z (2)
ζ + · · · , ζ = ± (317)

In the expansion (317) the term Z (0)
ζ (r, t) is evidently a solution of equation (302) with α = 0,

namely

∂t Z (0)
ζ = −iζγ(ν)[−iζ∇r]Z (0)

ζ , Z (0)
ζ (0) = hζ,β(r), hζ,β(r) = hζ (βr) (318)
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and can be interpreted as the linear response corresponding to (302). Its Fourier transform
(425) satisfies

Ẑ (0)
ζ (η, t) = exp(−iζγ(ν)(ζη)t)ĥζ,β(η), ĥζ,β(η) = β−d ĥζ

(
1

β
η

)
, ζ = ± (319)

with the symbol γ(ν)(η) being defined by (200).
The function Z (1)

ζ in the expansion (317) is the FNLR of (302) and, based on (302) and
(317), one can verify that the FNLR Z (1)

ζ , ζ = ±, solves the following initial value problem

∂t Z (1)
ζ = −ζ iγ(ν)[−iζ �∇r]Z (1)

ζ + απ p[σ ]
ζ [−i �∇r]

(
Z (0)2

ζ Z (0)
−ζ

)
, Z (1)

ζ (0) = 0 (320)

Using (315) and (317) we then obtain the following expansion for the function Vζ (r, t)

Vζ (r, t) = ψ(�t)Zζ (r, t) = ψ(�t)Z (0)
ζ (r, t) + αψ(�t)Z (1)

ζ (r, t) + α2ψ(�t)Z (2)
ζ (r, t) + · · ·

(321)
or, in other words

Vζ (r, t) = V (0)
ζ (r, t) + αV (1)

ζ (r, t) + α2V (2)
ζ (r, t) + · · · (322)

V (m)
ζ (r, t) = ψ(�t)Z (m)

ζ (r, t), m = 1, 2 . . . (323)

where V (0)
ζ (r, t) and V (1)

ζ (r, t) are, respectively, the linear and the first nonlinear responses
corresponding to the exact solution Vζ (r, t) of the NLS (310) with the source (313).

To find the modal representation V̂ (0)
ζ for the linear response V (0)

ζ as defined by (322) and
(323) we use (319) which implies

V̂ (0)
ζ (η, t) = v̂

(0)
ζ (η, τ )e−iζγ(ν)(ζη)t = ψ(τ )ĥζ,β(η)e−iζγ(ν)(ζη)t , τ = �t (324)

Comparing the above expression for V̂ (0)
ζ (η, t) and the coefficient Ũ (0)

n̄ (ζk∗ +η, t) determined
by (207) and (189) we observe that

�(η)V̂ (0)
ζ (η, t) = Ũ (0)

n̄ (ζk∗ + η, t) (325)

and for β → 0 according to (209)

V̂ (0)
ζ (η, t) = Ũ (0)

n̄ (ζk∗ + η, t) + O(βN� ) = ũ(0)
n0,ζ

(ζk∗ + η, τ )e−iζγ(ν)(ζη)t + O(βN� ) (326)

where N� can be taken as large as we please, and the term O(βN� ) comes from the cut-off
function � (see the remark in section 4.1.2).

The first nonlinear response (FNLR) V (1)
ζ is the term (323) with m = 1 in the expansion

(322). Though the FNLR V (1)
ζ is already described by (323), it is useful to derive a differ-

ential equation with a source for V (1)
ζ based on (310) and (313). Notice that (313) and (317)

imply

JZ ,ζ = −�ψ ′(�t)
[
Z (0)

ζ (r, t) + αZ (1)
ζ

] − απ (ψ − ψ3)p[σ ]
ζ [−i �∇r]

((
Z (0)

ζ

)2
Z (0)

−ζ

) + O(α2) (327)

The equation for V (1)
ζ can be obtained from (310) and (327) by collecting terms proportional

to α, yielding

∂t V
(1)
ζ = −iζγ(ν)[−iζ �∇r]V (1)

ζ + απ

α
p[σ ]

ζ [−i �∇r]
(
V (0)2

ζ V (0)
−ζ

) − J (1)
Z ,ζ (328)

with the source

J (1)
Z ,ζ (r, t) = −�ψ ′(�t)Z (1)

ζ − απ

α
(ψ(�t) + ψ3(�t))p[σ ]

ζ [−i �∇r]
(
Z (0)2

ζ Z (0)
−ζ

)
(329)
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Consequently, the Fourier transform of J (1)
Z ,ζ is given by

Ĵ (1)
Z ,ζ (η, t) = −�ψ ′(�t)Ẑ (1)

ζ (η, t) − απ

α
(ψ − ψ3) ̂p[σ ]

ζ

(
Z (0)2

ζ Z (0)
−ζ

)
(η, t) (330)

where Z (0)
ζ (η, t) and Ẑ (1)

ζ (η, t) are defined respectively by (319) and (320).
We can use now the equation (328) together with (323) to find that

V̂ (1)
ζ (η, t) = απ

α

∫ t

0
exp{−iζγ(ν)(ζη)(t − t1)}ψ3(�t) ̂p[σ ]

ζ Z (0)2
ζ Z (0)

−ζ (η, t1) dt1

−
∫ t

0
exp{−iζγ(ν)(ζη)(t − t1)} Ĵ (1)

Z ,ζ (η, t1) dt1 (331)

Analogously to (150) it is convenient to single out a slow time factor v̂ζ (η, τ ) of the modal
amplitude V̂ζ (η, t) defined by

V̂ζ (η, t) = v̂ζ (η, τ )e−iζγ(ν)(ζη)t , τ = �t, v̂ζ (η, τ ) = v̂
(0)
ζ (η, τ ) + αv̂

(1)
ζ (η, τ ) + · · · (332)

Then (331) implies, after the substitution η = βq,

v̂
(1)
ζ (βq, τ ) = 3β−d

�

∫ τ

0

∫
q′′′+q′′+q′=q

exp

{
i�(ν)(�ζ0, β�q)

τ1

�

}
ψ3(τ1)

×p[σ ]
ζ (β�q �)ĥζ (q′)ĥζ (q′′)ĥ−ζ (q′′′) dq′dq′′dτ1 − v̂

(1)
ζ

(
J (1)

Z , βq, τ
)

(333)

where

v̂
(1)
ζ

(
J (1)

Z , βq, τ
) = 1

�

∫ τ

0
exp

{
iζγ(ν)(ζβq)

τ1

�

}
Ĵ (1)

Z ,ζ

(
βq,

τ1

�

)
dτ1, ζ = ± (334)

with �ζ0 and �(ν)(�ζ0, β�q) being defined by (253) and (254), respectively. Comparing with (180)
we see that

v̂
(1)
ζ

(
J (1)

Z , βq, τ
) = ũ(1)

ζ,n0
(J1; k, τ ) + O

(
βν+1

�2

)
Comparing the equality (333) for the NLS with the interaction integral (277) for the NLM

we establish the following relation between them:

v̂
(1)
ζ (η, τ ) = −3I (σ )

n̄,ζ,ζ,−ζ (ζk∗ + η, τ ) − v̂
(1)
ζ

(
J (1)

Z , η, τ
)

(335)

5.3 Relating the NLS and the NLM

Using (180) and (185) we obtain that the part of the linear response ũ(1,0)
ζ,n0

of the NLM originating
from J(1) is

ũ(1)
ζ,n0

(J(1); ζk∗ + η, τ ) = 1

�

∫ τ

0
exp

{
− iζγ(ν)(ζη)

τ1

�

}
Ĵ (1)

Z ,ζ

(
η,

τ1

�

)
dτ1 (336)

Therefore, from (335), (334) and (280) we readily obtain

ũ(1,0)
n̄0

(ζk∗ + η, t) = v̂
(1)
ζ (η, τ ) + O

(
βν+1

�2

)
+ O

(
βν−1

�

)
+ O(�)O(|U(1)|) (337)

Using (326) we obtain that

V̂ (0)
ζ (η, t) + αV̂ (1)

ζ (η, t) = Ũ (0)
ζ,n0

(k∗ + η, t) + αŨ (1)
ζ,n0

(k∗ + η, t) + O(βν−1) + O(�) (338)
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Notice that in the equality (338) and below we omit the error terms which include O(βN� )
with a large N� since such terms are absorbed by larger terms in the relevant expressions.
Note that (338) and (30) imply the fulfilment of (173) with N1 = 0, N2 = σ = ν − 2, N3 = 0
and also imply (62) and (63).

In the following section we explain the origin of the additional terms in the ENLS with ν = 2
and ν = 4. After matching these terms with the FNLR of the NLM, better error estimates are
derived similarly to the above derivation for the classical NLS with ν = 2.

5.4 Bidirectional waves and four-mode coupling

In this section we assume that the condition (6) for the electric permittivityε(r) holds, implying,
in particular, the property of complex conjugation (145) for the corresponding eigenmodes
and allowed using (38). Recall now that for the excitation current J to be real-valued its modal
coefficients j̃ ζ,n0 (k∗, t) must satisfy the relations (164). In other words, if a mode (ζ, n0, ζk∗)
is in the modal composition of J with an amplitude jζ,n0 (k∗, t) then the mode (−ζ, n0, −ζk∗)
is there as well with amplitude [ j̃ ζ,n0 (k∗, t)]∗. Evidently, for real-valued currents the modes
in their modal compositions are always presented in pairs

↑n0, k∗↓ = {(1, n0, k∗), (−1, n0, −k∗)} = ∪ζ=±1(ζ, n0, ζk∗) (339)

and, in view of (2) and (140), every such a pair involves modes G̃1,n(r, k∗) and G̃−1,n(r, −k∗)
having the same frequency ωn0 (k∗) = ωn0 (−k∗), the same group velocity ω′

n0
(k∗) and complex

conjugate amplitudes. We refer to the modal pairs (339) as doublets.
Observe that (2), (140) and (145) imply also that modes involved in another modal pair

{(1, n0, −k∗), (−1, n0, k∗)} are

G̃1,n0 (r, −k∗) = [G̃−1,n0 (r, k∗)]∗ and G̃−1,n0 (r, k∗) = [G̃1,n0 (r, −k∗)]∗ (340)

and that they have the frequency ωn0 (k∗) and the group velocity ω′
n0

(−k∗) = −ω′
n0

(k∗). Hence,
evidently the two doublets ↑n0, k∗↓ and ↑n0, −k∗↓ involve the complex conjugate eigen-
modes (340) of the same frequency ωn0 (k∗) and they have opposite group velocities ±ω′

n0
(k∗).

Consequently, a wave composed of the modal quadruplet

⇑n0, k∗⇓ = ↑n0, k∗↓ ∪ ↑n0, −k∗↓
= {(1, n0, k∗), (−1, n0, −k∗), (1, n0, −k∗), (−1, n0, k∗)} (341)

is bidirectional since wavepackets corresponding to its two constitutive doublets ↑n0, k∗↓
and ↑n0, −k∗↓ propagate with opposite group velocities ±ω′

n0
(k∗). Such a bidirectional wave

can be directly excited, i.e. excited through the linear mechanism, by a current composed of
the quadruplet ⇑n0, k∗⇓ in (341). The four modes in the quadruplet ⇑n0, k∗⇓ are coupled
through relatively strong nonlinear interactions and this is the subject of this section. It turns
out that the quadruplet ⇑n0, k∗⇓ in (341) is the only modal quadruple which is generic
with respect to the excitation frequency variations and which has relatively strong (of the
order O(�)) nonlinear interaction between its doublets; we name and will refer to it as
a bidirectional quadruplet. Note that two doublets ↑n0, k∗↓ and ↑n1, k∗↓ corresponding to
different bands, if directly excited, also have the same order of interaction O(�) between them,
but one has to use a special pair of exactly matched excitation carrier frequencies ω1 = ωn0 (k∗)
and ω2 = ωn1 (k∗) to directly excite them, whereas only one frequency ωn0 (k∗) is required to
excite the bidirectional quadruplet.

In the preceding sections we have considered the case where only one doublet ↑ n0, k∗ ↓
was excited. This case describes the situation when the directly excited wave propagates only
in one direction. When only the excitation frequencies ω = ωn0 (k∗) and the wave numbers ±k∗
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are fixed, a general time-harmonic excitation produces waves propagating in both directions.
As we have shown in section 3.2 the magnitude of their non-FM interaction is O(�), and
when we take into account corrections of the order O(�) they have to be considered. For a
discussion of multimode interactions see section 1.2.

Now let us introduce a bidirectional excitation current of the form (158) where the amplitude
j̃ (0)
ζ,n0

(k, t) is defined by the following (slightly more general than (188)) formula

j̃ (0)
ζ,n0

(k, t) = −�ψ0(�t)β−d

[
�(k − ζk∗)ĥ+

ζ

(
k − ζk∗

β

)
+ �(k + ζk∗)ĥ−

ζ

(
k + ζk∗

β

)]
(342)

with functions ĥ±
ζ (q) having the same properties as ĥζ (q) in (188). The excitation current

defined by (342) directly excites the four modes for the bidirectional quadruplet ⇑n0, k∗⇓
(341) with the linear response modal amplitudes Ũ (0)

ζ,n0
(±k∗ + η, t), ζ = ±1. If we introduce

kϑ
∗ = ϑk∗, ϑ = ± (343)

then the bidirectional quadruplet ⇑n0, k∗⇓ is composed of the two doublets ↑n0, kϑ
∗ ↓, ϑ = ±,

with the group velocities ϑω′
n0

(k∗), and, importantly, the nonlinear interactions between those
doublets are non-FM interactions satisfying relation (243). Using relation (243), the phase
matching relation (71), with k′ = ζ ′kϑ

∗ , k′′ = ζ ′′kϑ
∗ , k′′′ = ζ ′′′kϑ

∗ , and arguments similar to
those used to derive (225), (227) and (243), we conclude that the triad of modes from the
quadruplet ⇑n0, k∗⇓ affects only the mode from this quadruplet with the quasimomentum

(ζ ′ + ζ ′′ + ζ ′′′)kϑ
∗ = −ζkϑ

∗ = ζk−ϑ
∗ (344)

This condition selects, from formally possible 44 interactions, only a few significant ones.
Namely, condition (344) implies that a pair of three numbers ζ ′, ζ ′′, ζ ′′′ has the same sign as
−ζ , we set

ζ ′ = ζ ′′ = −ζ, ζ ′′′ = ζ, �ζ0,× = (ζ, −ζ, −ζ, ζ ) (345)

and two more cases are similar to the above. The corresponding interaction wavevectors �k are
given by the formula:

�k∗,×,− = (−k∗, k∗, k∗, k∗), �k∗,×,+ = (k∗, −k∗, −k∗, −k∗) (346)

The interaction integral (211) with �ζ , �k satisfying (345) and (346) describes the impact
of the triad of waves from the forward-propagating doublet onto the modal coefficient of
the backward-propagating doublet, note that this interaction has three modes (two of them
forward-propagating) with the same ζ (that is, in the same band) and one mode (forward-
propagating) with the opposite ζ (that is, in the opposite band).

The analysis of the interaction integral (211) with �ζ given by (345) and �k in a vicinity of
�k∗,× determined by (346) is similar to the analysis of the integral (237) in the FM case where
�k is in a vicinity of �k∗ determined by (232). We obtain that similarly to (277) and (278) the
principal part of the non-FM interaction integral is given by the formula

βd I (0)
n̄,−ζ,−ζ,ζ (−ζk∗ + βq, τ ) = 1

�

∫ τ

0

∫
q′′′+q′′+q′=q

exp

{
i�(ν)(�ζ , β�q0)

τ1

�

}
Q̆�n0 (�ζ0,×�k∗,×,−)

×ψ3(τ1)ĥ+
−ζ (q′)ĥ+

−ζ (q′′)ĥ+
ζ (q′′′(�q)) dq′dq′′dτ1 (347)

where we take σ = 0 since we do not need to take into account the higher approximations of
this integral which is already � times smaller than the FM interactions. Similarly to (277) the
error of approximation of the integral (237) is given by the formula

βd [In̄,−ζ,−ζ,ζ (−ζk∗ + βq, τ ) − I (0)
n̄,−ζ,−ζ,ζ (−ζk∗ + βq, τ )] = O(β) (348)
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The four modal amplitudes Ũζ,n0 (ζk±
∗ +η, t) are approximated by the Fourier transforms of

the four NLS solutions Zϑ
ζ (r, t). We write the corresponding system in the most general case

of complex-valued excitation currents and then we will discuss the reduction of the system
when the excitation is real. To approximate the non-FM terms we include the coupling terms
δ+
×,ζ ((Z−

−ζ )2 Z−
ζ ) in the equation for Z+

ζ and δ−
×,ζ ((Z+

−ζ )2 Z+
ζ ) in the equation for Z−

ζ where

δ−
×,ζ = 3Q̆�n0 (�ζ0,×�k∗,×,−), δ+

×,ζ = 3Q̆�n0 (�ζ0,×�k∗,×,+) (349)

We take in (98) and (99) ν = 4 to take into account terms of order O(β2) which are comparable
with the terms coming from (347) in the case of classical nonlinear Schrödinger scaling. We
obtain two pairs of coupled equations for Z+

ζ and Z−
ζ , ζ = ±:

{∂t + ζ iγ(4)(−iϑζ∇r)}Zϑ
ζ + αδϑ

×,ζ

((
Z−ϑ

−ζ

)2
Z−ϑ

ζ

) = +απ pϑ,[2]
ζ [−i �∇r]

(
Zϑ

−ζ

(
Zϑ

ζ

)2)
(350)

with the initial data

Zϑ
ζ (r, t)|t=0 = hϑ

ζ (r), ζ = ±, ϑ = ± (351)

We have

Ũζ,n0 (ζkϑ
∗ + η, t) = Ẑϑ

ζ (η, t) + O(β3) + O(�) + O(α) (352)

If we take into account in (353) the terms that originate from the first-order correction to the
susceptibility we obtain the system

{∂t + ζ iγ(4)(−iϑζ∇r)}Zϑ
ζ + αδϑ

×,ζ

((
Z−ϑ

−ζ

)2
Z−ϑ

ζ

) + απδϑ
1,ζ Zϑ

ζ Zϑ
−ζ {∂t + ζ iγ(4)(−iϑζ∇r)}Zϑ

ζ

= −απδϑ
2,ζ

(
Zϑ

ζ

)2{∂t − ζ iγ(3)(iϑζ∇r)}Zϑ
−ζ + απ pϑ,[2]

ζ [−i �∇r]
(
Zϑ

−ζ

(
Zϑ

ζ

)2)
(353)

These additional terms with coefficients δ±
1,ζ are discussed in section 6. Addition of these

terms and taking into account interband coupling (see section 1.4.4) improves the error term
in (352) replacing O(�) by O(�β). The term O(α) in the approximation error term in (352)
can be replaced by O(αβ) if the fifth-order terms of the nonlinearity are taken into account
(see section 1.4.6 and the 7.1.1. Note that if the initial data are real and the nonlinearity is real,
then we have

hϑ
−ζ (r) = hϑ

ζ (r)∗, Zϑ
−ζ (r, t) = [

Zϑ
ζ (r, t)

]∗
, ϑ = ±, ζ = ± (354)

and, consequently, we can apply (38). Namely, we exclude ζ = −1 and (353) is reduced to the
system (125) of two scalar equations (similar equations are known as coupled mode equations)
for Zϑ

+, ϑ = ±.

5.5 Representation of solutions in the space domain

Here we derive formula (42) providing a representation for Udir
Z (r, t) in the space domain in

terms of Zζ (r, t). The principal part of the approximate solution UZ (r, t) is determined by
(58) in terms of its Bloch modal coefficients and the Fourier transform Ẑζ (η, t) of the solution
of the NLS as follows:

Udir
Z (r, t) = UZ+ (r, t) + UZ− (r, t) (355)

where

UZζ
(r, t) = βd

(2π)d

∫
Rd

�(βq)Ẑζ (βq, t)G̃ζ,n0 (r, ζk∗ + βq)dq, ζ = ± (356)
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where Ẑζ (η, t) is the Fourier transform of the solution Zζ (r, t) of (36), (37) or (47). According
to (307) βd Ẑζ (βq, t) = Ẑβ,ζ (q, t) where Zβ,ζ is a solution of (308) which regularly depends
on β. According to (142)

G̃ζ,n0 (r, ζk∗ + βq) = Ĝζ,n0 (r, ζk∗ + βq)ei(ζk∗+βq)·r (357)

where Ĝζ,n0 (r, k) is a 1-periodic function of r. We then approximate Ĝζ,n0 (r, ζk∗ + βq) by
its Taylor polynomial of degree σ

Ĝζ,n0 (r, ζk∗ + βq) = pζ,g,σ (r, βq) + O(βσ+1), σ + 1 ≤ ν (358)

For σ = 2, the polynomials have the form

pζ,g,2(r, βq) = Ĝζ,n0 (r, ζk∗) + βĜ′
ζ,n0

(r)(q) + 1

2
β2Ĝ′′

ζ,n0
(r)(q2) (359)

with coefficients defined in terms of the tensors:

Ĝ′
ζ,n0

(q) = ∇kĜζ,n0 (r, ζk∗) · q, Ĝ
′′
ζ,n0

(q2) = ∇2
kĜ+,n0 (r, ζk∗)q · q (360)

Hence,

UZζ
(r, t) = 1

(2π )d

∫
Rd

βd�(βq)Ẑζ (βq, t)pζ,g,σ (r, βq)ei(ζk∗+βq)·r dq + O(βσ+1) (361)

Assuming that Ẑζ (βq, t) decays sufficiently fast as |q| → ∞, i.e.

βd |Ẑζ (βq, t)| ≤ CN (1 + |q|)−N� (362)

with large enough N� (this assumption follows from the regularity of Zβ,ζ according to (307)),
we obtain

UZζ
(r, t) = eiζk∗·r

(2π )d

∫
Rd

Ẑζ (q, t)pζ,g,σ (r, q)eiq·r dq + O(βσ+1) (363)

Note that

pζ,g,σ (r, q)Ẑζ (q, t) = ̂pζ,g,σ (r, −i∇r)Zζ (r, t) (364)

where p[σ ](r, −i∇r) is a differential operator with the polynomial symbol p[σ ](r, q) with
coefficients that depend on r, see (430). Hence, since the integral in (363) is the inverse
Fourier transform, we obtain that

UZζ
(r, t) = eiζk∗·rpζ,g,σ (r, −i∇r)Zζ (r, t) + O(βσ+1) (365)

For σ = 2 we obtain

UZζ
(r, t) = U0

Zζ
(r, t) + U1

Zζ
(r, t) + U2

Zζ
(r, t) + O(β3) (366)

According to (359) and (360) the dominant term is

U0
Zζ

(r, t) = eiζk∗·rĜζ,n0 (r, ζk∗)Zζ (r, t) = G̃ζ,n0 (r, ζk∗)Zζ (r, t) (367)

Note that this term has the form which is used as an ansatz for the solution of the NLM in
[12]. The first-order correction takes the form

U1
Zζ

(r, t) = −ieiζk∗·r∇kĜζ,n0 (r, ζk∗)·∇r Zζ (r, t)

= −ieiζk∗·r[∂r1 Zζ (r, t)∂k1 Ĝζ,n0 (r, ζk∗) + · · · + ∂rd Zζ (r, t)∂kd Ĝζ,n0 (r, ζk∗)
]

(368)

The second-order correction is

U2
Zζ

(r, t) = −eiζk∗·r 1

2

d∑
j,l=1

∂k j ∂kl Ĝζ,n0 (r, ζk∗)∂r j ∂rl Zζ (r, t) (369)
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Similarly, we can write higher terms of the expansion in β. Note that since Zζ (r, 0) = hζ (βr)
we have

U1
Zζ

(r, t) = O(β), U2
Zζ

(r, t) = O(β2) (370)

6. The first nonlinear response and its time-harmonic approximation

To improve the accuracy of the NLM–NLS approximation we have to improve the term O(�)
in (337) originating from the time-harmonic approximation. If we use a certain modification
of the ENLS it modifies v̂

(1)
ζ (q, τ ) so that the term O(�) can be replaced by O(�β). To this end

we consider in this section an approximation of the FNLR U(1) with ũ(1)
n̄ determined by (158),

(160), (162) and (167) in terms of the susceptibility χ(3)
D (r; ω1, ω2, ω3) defined by (156). This

approximation is based on the following asymptotic formulas for � → 0

ũ(1)
n̄ (r, k, τ ) = ũ(1,0)

n̄ (r, k, τ ) + O(�)O(|ũ(1)|) (371)

ũ(1,0)
n̄ (r, k, τ ) = ũ(1,0)

n̄ (k, τ )G̃n̄(r, k)

ũ(1)
n̄ (r, k, τ ) = ũ(1,0)

n̄ (r, k, τ ) + ũ(1,1)
n̄ (r, k, τ ) + O(�2)O(|ũ(1)|) (372)

as well as higher order expansions which are derived below.

6.1 The first nonlinear response as a causal integral

Here we recast the FNLR for an almost time-harmonic excitation as a causal convolution
integral. In the next subsections we derive asymptotic expansions of the causal nonlinearity
which do not involve explicit time convolution integration. Notice first that the solution of (3)
can be written in the form

U(t) =
∫ t

0
e−iM(t−t ′)[αFNL(U) − J] dt ′ (373)

which, after a change of variables τ = �t , yields the following expression for the n̄th mode:

Ũn̄

(
k,

τ

�

)
= 1

�

∫ τ/�

0
e−iωn̄ (k) (τ−τ1)

� [F̃NL(U)n̄(k, τ1) − J̃ n̄(k, τ1)] dτ1 (374)

According to (152) and (153)

FNL(U) = F (3)
NL(U) + αF (5)

NL(U) + α2F (7)
NL(U) + · · · (375)

and, as follows from (152) and (143), the modal coefficient F̃NL(U)n̄(k, τ1) is given by

F̃NL(U)n̄(k, τ1) = (F̃NL(U)(·, τ1), G̃n̄(·, k))H

=
∫

[0,1]d

F̃NL(U)(r, τ1, k) · σε(r)G̃∗
n̄(r, k) dr (376)

In particular, using formula (217) of [17] this coefficient can be rewritten as

F̃NL(U)n̄(k, τ1) =
∫

[0,1]d

˜SD(r, τ1; D) · ∇ × G̃B,n̄(r, k)∗ dr

= −iζωn̄(k)
∫

[0,1]d

˜SD(r, t ; D) · G̃D,n̄(r, k)∗ dr (377)
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This form of coefficients may be useful in computations since it uses only the D-component of
G̃n̄ . In fact, this specific form is not important in our analysis. The cubic part S(3)

D of SD(r, t ; D)
can be written in the form of the causal integral (154) where the tensors R(3)

D are smooth for
t1, t2, t3 ≥ 0 and satisfy the inequality∣∣R(3)

D (r; t1, t2, t3)
∣∣ ≤ C exp[−c0(t1 + t2 + t3)] (378)

for some c0 > 0. It is convenient to introduce, similarly to (183), operators S(m)
D,B and R(m)

D,B

that act in six-dimensional (D, B)-space; they act on the D-components of ũ(0)
n̄′ and take values

in the B-component. For example, when m = 3

R(3)
D,B

...U1U2U3 =
 0

R(3)
D

...D1D2D3

 , U j =
[

D j

B j

]
(379)

Using the above notation we get

S(3)
D,B(r, t ; U) =

∫ t

−∞

∫ t

−∞

∫ t

−∞
R(3)

D,B(r; t − t1, t − t2, t − t3)
... U(r, t1)

× U(r, t2)U(r, t3) dt1 dt2 dt3 (380)

and from (375) together with (153) we obtain the expansion

FNL(U)(r, t) =
∞∑

i=0

αi∇ × S(2i+3)
D,B (r, t ; U) (381)

To evaluate the integral in (374) for � � 1 we, as is commonly done in nonlinear optics,

represent the term F̃NL(U)(k, τ1) using the frequency-dependent susceptibilities. The FNLR
has a form similar to (373)

Ũ (1)
n̄ (k, t ′) =

∫ t ′

0
eiωn̄ (k)(t ′−t)

[
˜FNL(U(0))

(3)

n̄ (k, t) − j̃ (1)
n̄ (k, t)

]
dt (382)

By (375), (376) and (154) the modal coefficient of the FNLR is given by

ũ(1)
n̄ (r, k, �t ′) = eiωn̄ (k)t ′ ˜S(3)

D,B(·; D(0))
n̄
(r, k, t ′) − ũ(1)

n̄ (J1; k, �t ′) (383)

where ũ(1)
n̄ (J1; k, τ ) is defined by (180). Using expansion (52) and the convolution formula (see

[17]) we write the Floquet-Bloch transform of (380) in terms of slowly varying coefficients
ũn̄ defined by (150) and obtain

˜S(3)
D,B(·; U(0))(r, k, t ′) =

∑
n̄′,n̄′′,n̄′′′

1

(2π )2d

∫ t ′

0
e{−i

∑3
j=1 ωn̄( j) (k( j))t}

∫
[−π,π ]2d

k′+k′′+k′′′=k

∫ t

−∞

∫ t

−∞

∫ t

−∞

× e{−i
∑3

j=1 ωn̄( j) (k( j))(t j −t)}R(3)
D,B(r; t − t1, t − t2, t − t3)

...
3∏

j=1

G̃n̄( j) (k( j), r)

× �3(k)ψ(�t j )ĥζ ( j)

(
k( j)−ζ ( j)k∗

β

)
dt1 dt2 dt3 dk′ dk′′ dt (384)

This integral is simplified in section 6.2.
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6.2 Time-harmonic approximation

In this section we introduce an expansion yielding powers �l1 in the structured power series
(169). In particular, we obtain (371) and (372). If U(0)

n (r, t) has the form (198) of a slowly
modulated wavepacket with � � 1 then the time-harmonic approximation can be applied. It
effectively substitutes the integration with respect to time in the causal integral (384) with
expressions involving frequency dependent susceptibilities. This approximation is based on
the Fourier transform χ(3)

D of R(3) swith respect to the time variables as in (156), and it is
constructed as follows. Below we approximate ũ(1)

n̄ (k, τ ) in (383) by ũ(1,0)
n̄ (k, t), which is

defined by (181) and (184), and then estimate the error providing the higher order terms as
well. Using the Taylor approximation of ψ(�t j ) in (384) we get:

ψ(�(t j − t) + �t) =
N1∑

l=0

(−1)l�l

l!
ψ (l)(�t)(t − t j )

l + ψ(N1) (385)

with

|ψ(N1)| ≤ CN1�
N1+1|t j − t |N1+1 (386)

Substituting the Taylor polynomial approximation for ψ(�t j ) into (384) we obtain a sum of
terms∫ t

−∞

∫ t

−∞

∫ t

−∞
R(3)

D,B(r; t − t1, t − t2, t − t3) e{−i
∑3

j=1 ωn̄( j) (k( j))(t j −t)}

×
3∏

j=1

(−1)l j �l j

l j !
(t − t j )

l j ψ (l j )(�t) dt1 dt2 dt3 = χ(3)
D,B,l̄(r; ωn̄′ (k′), ωn̄′′ (k′′), ωn̄′′′ (k′′′)) (387)

where l̄ = (l1, l2, l3) and we use the following notation:

χ(3)
D,B,l̄(r; ω1, ω2, ω3) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
R(3)

D,B(r; t1, t2, t3)ei(ω1t1+ω2t2+ω3t3)
3∏

j=1

(−1)l j

l j !
t

l j

j dt1 dt2 dt3

(388)

Evidently the susceptibility χ(3)
D,B defined by (183) and (156) equals χ(3)

D,B,0. A straightforward
computation shows that the quantity χ(3)

D,B,l̄(r; ω1, ω2, ω3) defined by (388) equals the partial
derivative of χ(3)

D,B , defined by (183) and (156), with respect to its frequency arguments, namely

χ(3)
D,B,l̄(r; ω1, ω2, ω3) = i|l̄|

l1!l2!l3!

∂ |l̄|χ(3)
D,B(r; ω1, ω2, ω3)

∂ω
l1
1 ∂ω

l2
2 ∂ω

l3
3

(389)

Substituting (387) into (384) we obtain

˜∇ × S(3)
D,B(·; U(0))

n̄
(k, t) = 1

(2π )2d

N1∑
|l̄|=0

�|l̄| ∑
n̄′,n̄′′,n̄′′′

˜Q((u(0))3)(�n, l̄, k, �t) + O(�N1+1) (390)

where

Q ˜((u(0))3)(�n, l̄, k, �t) =
∫ t

0
eiφ�n (�k)t

∫
[−π,π]2d

k′+k′′+k′′′=k

∫
[0,1]d

∇

×
[
χ(3)

D,B,l̄(r; ωn̄′ (k′), ωn̄′′ (k′′), ωn̄′′′ (k′′′))
...

3∏
j=1

G̃n̄( j) (k( j), r)

]

· G̃n̄(k, r)dr �3(�q)
3∏

j=1

ψ (l j )(�t ′)ĥζ ( j)

(
k( j) − ζ ( j)k∗

β

)
dk′dk′′dt ′ (391)
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Hence, we obtain from (384) the formula for the modal coefficients:

u(1,l̄)
n̄ (k, τ ) = 1

�

∑
n̄′,n̄′′,n̄′′′

∫ τ

0
eiφ�n (�k) τ1

�

∫
[−π,π]2d

k′+k′′+k′′′=k

Q̆�n,l̄(�k)�3(�q)
3∏

j=1

ψ (l j )(τ1)β−d ĥζ ( j) ((k( j) − ζ ( j)k∗)/β) dk′dk′′dτ1 (392)

where Q̆�n,l̄(�k) is given by the following formula (similar to (179) with χ(3)
D being replaced

with its frequency derivative χ(3)
D,B,l̄)

Q̆�n,l̄(�k) = 1

(2π )2d

([
0

∇ × χ(3)
G,D,B,l̄

]
, G̃n̄(r, k)

)
H

χ(3)
G,D,B,l̄ = χ(3)

D,B,l̄(ωn̄′ (k′), ωn̄′′ (k′′), ωn̄′′′ (k′′′))G̃D,n̄′ (r, k′)G̃D,n̄′′ (r, k′′)G̃D,n̄′′′ (r, k′′′) (393)

Observe that the modal susceptibility Q̆�n(�k) = Q̆�n,0(�k) defined by (179) is symmetric with
respect to permutations of ζ ( j), k( j) whereas Q̆�n,l̄(�k) defined by (393) with nonsymmetric l̄ is
not.

Hence, taking the term at α in (381) and using (390) we obtain that (175) holds, i.e.

ũ(1)
n̄ (k, τ ) = ũ(1,0)

n̄ (k, τ ) +
N1∑

l=1

�l ũ(1,l)
n̄ (k, τ ) + O(�N1+1)O(|ũ(1)|) (394)

The dominant term ũ(1,0)
n̄ (k, t�) is given by (176). In particular, we obtain the formula

βd ũ(1)
n̄ (ζk∗ + βq, τ ) = βd ũ(1,0)

n̄ (ζk∗ + βq, τ ) + O(�)O(|u(1)|) (395)

Remark Though here we consider the time-harmonic approximation of the third-order term
∇B × S(3)

D,B(r, t ; U(0)) in (381), similar time-harmonic approximations are applicable to terms
∇ × S(m)

D,B(r, t ; U(0)) of an arbitrary order m of homogeneity.

6.3 The first-order correction to the susceptibility

For |l̄| = 1, the term ũ(1,1)
n̄ involves three expressions of the form (392) with l1 + l2 + l3 = 1.

Hence

ũ(1,1)
n̄ (r, k, τ ) =

∑
l1+l2+l3=1

ũ(1,l̄)
n̄ = 1

�

∑
l1+l2+l3=1

∫ τ

0
e{−i

∑3
j=1 ωn̄( j) (k( j)) τ1

�
}
∫

[−π,π ]2d

k′+k′′+k′′′=k

Q̆�n,l̄(�k)

×�3(�q)β−dψ2(τ1)ψ ′(τ1)
3∏

j=1

ĥζ ( j)

(
1

β
(k( j) − ζ ( j)k∗)

)
dk′ dk′′ dτ1 (396)

The integral (392) is similar to (211). Consequently, the principal order contribution there is
given by the FM terms such that �n satisfies (213) and (224). The integral in (392) with such
�n takes a form similar to (238), i.e.

βd ũ(1,l̄)
n̄ (ζk∗ + βq, τ ) = 1

�

∫ τ

0

∫
q′+q′′+q′′′=q

exp

{
iφ�n0 (�ζ �k∗ + β�q)

τ1

�

}
∂τ1ψ(τ1)ψ2(τ1)

× �3((β�q))Q̆�n,l̄(�ζ0k∗ĥζ (q′′)ĥ−ζ (q′′′)dq′ dq′′ dτ1 (397)
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with the only difference that ∂τ1ψ(τ1)ψ2(τ1) replaces ψ3(τ1) (see section 8.3 where similar
terms are derived from the ENLS). The integral in (397) can be treated similarly to (238).

The next, first-order, approximation is given by the formula

ũ(1)
n̄ (ζk∗ + βq, τ ) = ũ(1,0)

n̄ (ζk∗ + βq, τ ) + �ũ(1,1)
n̄ (ζk∗ + βq, τ ) + O(�2)O(|ũ(1)|)

where ũ(1,1)
n̄ is given by (396) and (397), which yields (372).

Remark Note that the above expansions for the FNLR integral (382) can be applied to the
integral (374) for the exact solution. The formula (384) holds with Ũ(0)

n̄( j) replaced by Ũn̄( j) and

ψ(�t j )ĥ = ũ(0)
n̄( j) (�t j ) replaced by ũn̄( j) (�t j ). We have, similarly to (394),

ũn̄(r, k, τ ) = ũn̄,0(r, k, τ ) +
N1∑

l=1

�l ũn̄,l(r, k, τ ) + O(�N1+1)O(|ũ|) (398)

For the modal coefficients we get, similarly to (396),

ũn̄(k, τ ) = 1

�

N1∑
l=0

∑
l1+l2+l3=l

∑
n̄′,n̄′′,n̄′′′

�l
∫ τ

0

∫
[−π,π ]2d

k′+k′′+k′′′=k

eiφ�n (�k) τ1
� Q̆�n,l̄(�k)∂ l

τ1
[ũn̄′ (k′, τ1)ũn̄′′ (k′′, τ1)

× ũn̄′′′ (k′′′, τ1)] dk′dk′′dτ1 − 1

�

∫ τ

0
j̃ n̄(k, τ1) dτ1 + O(�N1 ) (399)

where Q̆�n,l̄(�k) are the same as in (393), τ ≤ τ∗ with a fixed τ∗. In the above formula we
assumed that the nonlinearity involves only the cubic term, but in the general case a similar
formula involves series with respect to powers αm with coefficients which are (2m + 1)-linear
tensors. �

7. Beyond the FNLR

In this section we answer two questions (i) Why do we use in representation (58) the exact
solution Z (r, t) of the NLS rather than its FNLR approximation? (ii) Why do we impose a
restriction τ∗

�
≤ α0

α
in (15), and what can be expected on longer time intervals? These two

subjects happen to be related.

7.1 Advantages of using an exact solution of the NLS

So, why use in (58) the exact solution Z (r, t) of the NLS rather than its FNLR approximation?
There are at least two advantages. First, the FNLR based on a solution of a linear nonhomoge-
neous equation of the form (320) may lead to functions that grow linearly as t → ∞, whereas
an exact soliton-type solution of the NLS is bounded for all t . Note though that in the time
interval t ≤ τ∗/� ≤ α0/α both functions are bounded, therefore to see the difference one has
to consider longer time intervals. The second and more important advantage is that using in
(58) the exact solution Z (r, t) of the NLS rather than its FNLR approximation produces a
smaller approximation error. Now let us take a look at the above arguments trying to avoid
technical details.

We need to use some information on solutions of the NLS. In some cases the NLS admits
explicit solutions, which are regular. In many cases information on the regularity of gen-
eral solutions Z (r, t) of NLS and ENLS is available (see [40], [41], and [7] in particular,
p. 64 of [7] and references cited there concerning nonelliptic NLS and ENLS). So, providing
the error estimates we assume the solutions of the NLS or ENLS to be sufficiently regular.
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Namely, we assume that, in addition to (206), we have the following estimate for solutions of
the NLS

|Ẑβ,ζ (q, t)|+
∑

|l̄|≤m0

∣∣∂ l̄
q Ẑβ,ζ (q, t)

∣∣+∑
l≤N0

∣∣∂ l
t Ẑβ,ζ (q, t)

∣∣ ≤ CN�
(1+|q|)−N� , 0 ≤ t ≤ τ∗

�
(400)

with a large enough N� . Note that the above condition includes rescaled Ẑβ,ζ which is a
solution of (308). Regular dependence of Ẑβ,ζ on β is consistent with the β-independent form
of the above estimate. In fact, we choose the value of N� depending on the chosen order of
approximation, and if we take only a few lower order terms of the approximation, the value
of N� does not have to be very large. The value of N� can be recovered from the Remark in
section 4.1.2. Here, for simplicity, we primarily consider the case of the classical NLS with
ν = 2, σ = 0 and the simplest ENLS with ν = 3, σ = 1; at in section 7.1.1 when we discuss
fifth-order corrections we take ν = 4, σ = 2.

Below we show that in fact formula (58) gives a better approximation than can be seen from
the FNLR. To see that we first consider a simpler case when higher order terms in expansion
(153) satisfy the estimate

SD(r, t ; D) = S(3)
D (r, t ; D) + O(α5α) (401)

where the constant α5 � 1 controls the magnitude of the next, the fifth-orders term in the
expansion of the nonlinearity (in particular, if the nonlinearity in (3) is purely cubic, α5 = 0).
Let

Z [1]
ζ = Z (0)

ζ + αZ (1)
ζ (402)

be the first-order approximation based on the linear and the first nonlinear responses to the
exact solution Zζ of the NLS. If in (58) we replaced Zζ by Z [1]

ζ we would obtain an approximate
solution UZ [1] (r, t) of the NLM which satisfies the equation:

∂t UZ [1] = −iMUZ [1] + αFNL(UZ [1] ) − J

= O(α5α) + O

(
α2

�

)
O(|U(1)|) + O(βν−1) + O(�) (403)

To see the origin of the leading term O( α2

�
)O(|U(1)|) of the discrepancy in (403) let us look at

the second-order term in the expansion (158). The next after the FNLR correction term α2U(2)

in the series (158) for α5 = 0 can be found by solving the equation

∂t U(2) = −iMU(2) + 3F (1)
NL(U(0), U(0), U(1)) − J(2); U(2)(t) = 0 for t ≤ 0 (404)

where the form of the expressionF (1)
NL(U(0), U(0), U(1)) is based on the fact thatF (1)

NL is a trilinear
operator. Note that since the expression for U(1) is itself a cubic with respect to U(0), the next
term U(2) is quintic. Note also that U(1) is of order 1/� and the time interval is of the same order
1/�. Since F (1)

NL(U(0), U(0), U(1)) involves frequency matched terms, we can conclude that U(2)

is of order 1/�2, or, equivalently, α2U(2) is of order O(α2/�)O(|U(1)|). The deciding advantage
of using the exact solution Zζ of the NLS, as we do in (58), is making the discrepancy much
smaller than (403):

∂t UZ = −iMUZ + αFNL(UZ [1] ) − J = JZ (405)

JZ = O(α5α
2) + [O(αβν−1) + O(α�)]O(|U(1)|) (406)

The terms of order O(α2/�2), O(α3/�3) and similar to them in the right-hand side of (404) and
its higher analogues disappear in (405). The reason for this is that those terms have exactly
the same form in the Floquet–Bloch expansion of solution of the NLM as the corresponding
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terms in the Fourier expansion of the solution of the NLS. Since Zζ satisfy the NLS exactly,
these terms completely cancel in the expansion of the solution of the NLS, consequently
corresponding terms completely cancel in the expansion of the solution of the NLM.

Now we provide some more details for the above considerations. We still use (40), (58) and
(67) to define the approximate solution UZ . To make sure that the discrepancy does not include
terms coming from the mismatch in the initial data in all orders of accuracy, the excitation
current J in (3) is given by (35) where J̃n̄ has the form

J̃ζ,n(ζk∗ + ζq, t) = �(q) ĴZ ,ζ (q, t)G̃n̄(ζk∗ + ζq), n = n0, ζ = ±1 (407)

where JZ ,ζ (r, t) is given in (313). Note that the difference between J̃(1)
n̄ (q, t) defined by (185),

(163) and found by subtracting J(0) from (407) is of order α2 and does not affect the FNLR
approximation.

Note that the term O(α�)O(|U(1)|) in (405) comes from the almost time-harmonic approx-
imation of the nonlinearity in the NLM. We consider then the NLS equations in the form
(100) and (101) with the initial conditions (102). From formulas (40), (58) and (67) we define
the modal coefficients ŨZ ,ζ,n(ζk∗ + ζη, t) of the approximate solution UZ (r, t). To show
that UZ (r, t) satisfies the NLM with a small discrepancy JZ we consider equations for the
Floquet–Bloch modal coefficients Ũζ,n(ζk∗ + ζη, t) of the exact solution U(r, t). We expand
operators that enter the equations with respect to � and β as we did for the FNLR. The leading
part of the expansion of the equation which includes n = n′ = n′′ = n′′′ = n0 of the exact
solution U(r, t) of the NLM has exactly the same form as the NLS written in terms of Fourier
transform. Therefore ũ Z ,ζ,n0 (ζk∗ + ζη, t) exactly satisfies this part of the equations. All re-
maining terms of the expansion contribute to the discrepancy. The estimates of these terms are
completely similar to estimates for the FNLR. The only difference is that instead of explicitly
given ũ(0)

ζ,n(ζk∗ + ζη, t) which was in the FNLR we have have to consider the same formulas
with ũ Z ,ζ,n(ζk∗ + ζη, t) . The analysis is the same, but now we have to use (400) instead of
(206). The analysis implies that the discrepancy is small, namely JZ satisfies (406). From
the estimate of the discrepancy of the equations we derive the estimate for the difference of
solutions

U(r, t) − UZ (r, t) = [O(α5α
2) + O(αβν−1) + O(α�)]O(|U(1)|) (408)

in the interval τ0/� ≤ t < τ∗/� (in the final part of this subsection we discuss the relevance
of the restriction on the length of the time interval). Estimate (408) implies (46) and estimates
in section 1.4. Note that when ũ Z is defined by the FNLR, as in (403), we would have much
larger term O(α2/�) in addition to O(α5α

2). This is the main and very important advantage
of using the exact solution.

7.1.1 Fifth-order corrections. If the coefficient α5 in (401) is not small, in order to get
the approximation by UZ with error term O(α5α

2) replaced by O(βα2), one has to take
into account the fifth-order terms of FNL, and include into the NLS (302) a term similar to
α2

π Q5,±|Z±|4 Z± as in (118):

∂t Zζ = −iζγ(4)[−iζ �∇r]Zζ + απ p[2]
ζ [−i �∇r]

(
Z2

ζ Z−ζ

) + α2
π Q5,ζ Z3

ζ Z2
−ζ (409)

The coefficient

Q5,ζ = 10Q̆�n,5(�ζ0�k∗) (410)

is determined by the modal susceptibility of fifth-order similar to (179):

∇ × χ(5)
D (ωn̄′ (k′), ωn̄′′ (k′′), . . . , ωn̄(5) (k(5)))

...G̃D,n̄′ (·, k′) · · · G̃D,n̄(5) (·, k(5)) (411)
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Q̆�n,5(�k) = 1

(2π )4d
×

([
0

∇ × χ(5)
D

]
, G̃n̄(·, k)

)
H

χ(5)
D = χ(5)

D (ωn̄′ (k′), ωn̄′′ (k′′), . . . , ωn̄(5) (k(5)))
... G̃D,n̄′ (·, k′)· · · G̃ D,n̄(5) (·, k(5)) (412)

with n = n0, �ζ0 = (ζ, ζ, ζ, ζ, −ζ,−ζ ). The tensor χ(5)
D is defined by a formula similar to (156)

based on the kernel R(5)
D that corresponds to S(5)

D in (153).
Note that to obtain high-precision matching of initial data for the NLS and the source term

for the NLM one has to use there instead of (313) the following modified source

JZ ,ζ = −�ψ ′(�t)Zζ − απ (ψ − ψ3)p[σ ]
ζ [−i �∇r]

(
Z2

ζ Z−ζ

) − α2
π Q5,ζ (ψ − ψ5)Z3

ζ Z2
−ζ (413)

After the inclusion of the term α2
π Q5,ζ Z3

ζ Z2
−ζ the approximation error of the NLS–NLM

approximation, which stems from the truncation of FNL, becomes O(βα2) instead of O(α5α
2)

and formula (408) with σ = 2, ν = 4 takes the form

U(r, t) − UZ (r, t) = [α2β + O(αβ3) + O(α�)]O(|U(1)|) (414)

Similarly, a more elaborate analysis shows that if we take in the ENLS ν = 4, σ = 2, and take
into account the first-order susceptibility correction as in (114) or (118) with Q5,± defined
by (120) we obtain the following improved error estimate

U(r, t) − UZ (r, t) = [α2β + O(αβ3) + O(α�β)]O(|U(1)|) (415)

Note that in the above error estimates when ν = 4, σ = 2 we assumed that the ENLSs are
constructed so that they take into account the effects of interband interactions.

7.2 Longer time intervals

Here we consider the case when (15) does not hold, namely 1/� � 1/α, that is for
time scales large compared with the time scale 1/α related with the magnitude of the
nonlinearity.

Still the approximate solution UZ (r, t), which is constructed based on the ENLS (now
we take ν = 4, σ = 2), satisfies the Maxwell equation with a high precision on a long time
interval, namely

∂t UZ (r, t) = −iMUZ (r, t) + αFNL(UZ (r, t)) − J + JZ , t ≤ τ∗
�

JZ = O(α2β) + O(αβ3) + O(α�β) (416)

even when 1/� � 1/α. The only difference between equation (3) and equation (416) is the
discrepancy term JZ . The discrepancy is small if

[O(α2β) + O(αβ3) + O(α�β)] � 1 (417)

In this case equation (3) is satisfied by UZ with a small error.
Smallness of the discrepancy JZ , generally speaking, implies smallness of the approximation

error only on time intervals of order 1/α or shorter. Without assumptions on the stability of
the the exact solution U of (3) and the approximate solution UZ the difference between U and
UZ can be estimated as follows

U(r, t) − UZ (r, t) = O

(
1

α

[
eO( ατ∗

�
) − 1

])
[O(α2β) + O(αβ3) + O(α�β)] (418)
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Clearly, this estimate implies smallness of the difference between the solutions of equa-
tions (3) and equation (416) if α/� is bounded (or if it grows at most at a logarithmic
rate). If the discrepancy JZ in (416) is small and we want the exact solution U(r, t) to be
close to the approximate solution UZ (r, t) for times much greater than α/� then we have to
impose some kind of a stability condition on the nonlinearity FNL. More detailed analysis
shows that it is sufficient to impose a stability condition on the solution Z of the NLS which
serves as a basis for UZ . For stability results for solutions of NLS see [7], section II.4 and
[42–44]. A detailed, mathematically rigorous analysis of the validity of the approximation
by a stable solution of the NLS on a long time interval is done for some particular cases
in [45].

8. Some technical topics

In this section for our readers’ convenience we introduce some notations and discuss some
technical topics instrumental to the description of solutions to the NLM.

8.1 The Taylor formula

Let us introduce notations related to the Taylor formula. For a function h of variables
x1, . . . , xL = x we write the Taylor formula as

h(x + y) = h(x1 + y1, . . . , xL + yL ) = h(x) +
ν∑

|l|=1

1

l̄!
h[l̄](x)yl̄ + O(|y|ν+1) (419)

where

l̄ = (l1, . . . , lL ), |l̄| = l1 + · · · + lL , yl̄ = yl1
1 . . . ylL

L

1

l̄!
= 1

l1! · · · lL !
, h[l̄](x) = ∂ |l̄|h(x)

∂xl1
1 · · · ∂xlL

L

(420)

We often use a shorter notation∑
|l̄|=l0

1

l̄!
h[l̄](x)yl̄ = 1

l0!
H (l0)... (yl0 ) (421)

where l0 is an integer (not a integer vector) and H (l0)(yl0 ) is an l0-linear symmetric form. For
example, a symmetric cubic form can be written as:

H (3)... uvw =
L∑

j1, j2, j3=1

H (3)
j1, j2, j3

u j1v j2w j3 (422)

with the following symmetry property satisfied by the coefficients:

H (3)
j1, j2, j3

= H (3)
j2, j1, j3

= H (3)
j1, j3, j2

(423)

Using this notation we can rewrite (419) as

h(x + y) = h(x) + h′(x)(y) + 1

2
h′′(x)(y2) + · · · + 1

ν!
h(ν)(x)(yν) + O(|y|ν+1) (424)
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8.2 Fourier transform and linear differential operators

The Fourier transform û(η), η ∈ Rd , of a function u(r), r ∈ Rd , and its inverse are defined by

û(η) =
∫

Rd

u(r)e−ir·η dr

u(r) = 1

(2π )d

∫
Rd

û(η)eir·η dη, dη = dη1 · · · dηd (425)

Evidently

[û(−η)]∗ = ̂[u(η)]∗ (426)

Let γ (η) be a polynomial of the variable η written in a form of a Taylor polynomial similar
to (424)

γ (η) =
ν∑

l=0

1

|l|!γ
(l)...(ηl) (427)

where γ (l)
...(ηl) is an l-linear form similar to (422). Then the differential operator γ [−i �∇r] is

defined by formally replacing variables η j by the differential operators −i∂ j = −i∂/∂r j in
the polynomial γ (η). The polynomial γ (η) is called the symbol of the operator γ [−i �∇r]. In
particular, a general polynomial of third degree with ν = 3 takes the form

γ(3)(η) = γ0 +
∑

m

γ1mηm + 1

2

∑
m,l

γmlηmηl + 1

6

∑
m,l, j

γml jηmηlη j (428)

Consequently, the operator γ(3)[−i �∇r] with this symbol takes the form

γ(3)[−i �∇r]V = ωn0 (k∗)V − i
∑

m

γ1m∂m V − 1

2

∑
m,l

γml∂m∂l V + i

6

∑
m,l, j

γml j∂m∂l∂ j V (429)

More exactly, the operator γ [−iβ∇r] is defined based on the Fourier transform and the symbol
γ (βη) is

̂γ [−iβ∇r]u(η) = γ (βη)û(η) (430)

8.3 Nonlinearity in ENLS

Nonlinear terms in the ENLS involve spatial and time derivatives. We show that their Fourier
transforms have the same form as the convolution integrals in (277) or (397).

8.3.1 Nonlinearity involving spatial derivatives. Here we briefly describe the Fourier
transform of expressions that involve a product of spatial derivatives. From (425) we obtain,
for l̄ = (l1, . . . , ld ), that

∇ l̄
rV (r) = ∂ |l̄|V

∂rl1
1 . . . ∂rld

d

= 1

(2π )d

∫
Rd

i|l̄|ηl̄ V̂ (η)eir·η dη (431)

Consequently,

̂(−i)|l̄|∇ l̄ V (η) = ηl̄ V̂ (η) (432)
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Now we introduce linear operators acting in a nonsymmetric way on the three factors of a
product of three functions of d variables as in (111). First, let us introduce a symbol of such
an operator. If p[σ ](�q �) is a polynomial of �q � = (q′, q′′, q′′′) of degree σ it can be written as
a sum of monomials in the form

p[σ ](�q �) =
∑

|l̄ ′|+|l̄ ′′|+|l̄ ′′′|≤σ

al̄ ′,l̄ ′′,l̄ ′′′ (q
′)l̄ ′ (q′′)l̄ ′′ (q′′′)l̄ ′′′ (433)

where al̄ ′,l̄ ′′,l̄ ′′′ are the coefficients of the polynomial and multi-indices l̄ ′, l̄ ′′, l̄ ′′′ have the form
l̄ ′ = (l ′1, . . . , l ′d ) etc.

We define the action of the differential operator pm[−i �∇r] on the product of three functions
V ′, V ′′, V ′′′ by the following formula

p[σ ][−i �∇r](V ′V ′′V ′′′) =
∑

|l̄ ′|+|l̄ ′′|+|l̄ ′′′|≤σ

al̄ ′,l̄ ′′,l̄ ′′′ ([−i �∇r]l̄ ′ V ′)([−i �∇r]l̄ ′′ V ′′)([−i �∇r]l̄ ′′′ V ′′′) (434)

Notice that the order of factors in the product V ′V ′′V ′′′ matters for the action of p[σ ][−i �∇r]
and, generically,

p[σ ][−i �∇r](V ′V ′′V ′′′) �= p[σ ][−i �∇r](V ′V ′′′V ′′)if V ′′ �= V ′′′ (435)

For the Fourier transform we obtain the convolution formula

̂p[σ ][−i �∇r](V ′V ′′V ′′′)(η) = 1

(2π )2d

∫
η′+η′′+η′′′=η

p[σ ](�η �)V̂ ′(η′)V̂ ′′(η′′)V̂ ′′′(η′′′) dη′ dη′′ (436)

Multiplying this expression by an oscillating exponent we obtain expressions completely
similar to the integrands in (277) and (333).

8.3.2 Nonlinearity involving time derivatives. Equations (114) and (125) have time
derivatives in the nonlinear terms, for example Zζ Z−ζ (∂t + iL[4]

ζ )Zζ in (114). We show here
that the FNLR that corresponds to these terms has the same form as the FNLR coming from
the first-order correction to the susceptibility which is given by (396). The FM terms of the
form (396) lead to the FNLR of the following form similar to (397):

βd ũ(1,l̄)
n̄

(
ζk∗ + βq,

τ

�

)
= 1

�

∫ τ

0

∫
q′+q′′+q′′′=q

exp

{
i�(ν)(�ζ0, β�q)

τ1

�

}
∂τ1ψ(τ1)ψ2(τ1)

�3(β�q0)Q̆�n,l̄(�ζ0k∗ + �q0)ĥζ (q′)ĥζ (q′′)ĥ−ζ (q′′′(�q))dq′ dq′′ dτ1 (437)

Using (258) and (262) we obtain for the terms of the expansion (394)

�|l̄|ũ(1,l̄)
n̄

(
ζk∗ + βq,

τ

�

)
= �|l|β2d

�

∫ τ

0

∫
R2d

exp

{
i�(ν)(�ζ0, β�q)

τ1

�

}
∂τ1ψ(τ1)ψ2(τ1)

[
p[σ ]

ζ,l̄ (β�q) + O(βσ+1)
]

ĥζ (q′)ĥζ (q′′)ĥ−ζ (q′′′(�q))(1 + O(βν)) dq′ dq′′ dτ1 + O

(
βN�−2d

�

)
(438)

where p[σ ]
ζ,l (β�q) is the Taylor approximation for Q̆�n,l̄(�k) calculated at �k = �ζ0k∗ by a formula

similar to (260). We take in this formula σ = 0, ν = 2. Note that p[0]
ζ,l̄ (β�q) = Q̆�n,l̄(�ζ0k∗) is the

same for l̄ = (1, 0, 0) and l̄ = (0, 1, 0).
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We introduce the additional terms in the NLS that approximate this integral. From (332)
and (324) we obtain the identity

� exp{−iζγ(ν)(βζq′)t}∂t v̂
(0)
ζ (q, �t) = ∂t

[
V̂ (0)

ζ (q′, t)
] + iζγ(ν)(βζq′)V̂ (0)

ζ (q′, t) (439)

Since �t = τ , ∂t = �∂τ , (439) implies

� exp

{
i�(ν)(�ζ0, β�q)

τ1

�

}
∂τ1ψ(τ1)ψ2(τ1)ĥζ (q′)ĥζ (q′′)ĥ−ζ (q′′′(0))

= eiζγ(ν)(βζq)t
[
∂t [V̂

(0)(q′, t)] + iζγ(ν)(βζq′)V̂ (0)
ζ (q′, t)

]
V̂ (0)

ζ (ζq′′, t)V̂ (0)
−ζ (q′′′(0), t)

where V̂ (0)
ζ (q, t) is given by (324). Hence, for l̄ = (1, 0, 0) the principal part of the integral

(438) coincides with the slow time factor as in (332) of the Fourier transform of the term

(2π )2d

�

∫ τ

0
Q̆�n,l̄(�ζ0k∗)

(
V̂ (0)

ζ V̂ (0)
−ζ

(
∂t V

(0)
ζ + iζγ(ν)(−iζβ∇r)V (0)

ζ

))
dτ1 (440)

where V (0) is the linear response of the NLS given by (324). A similar formula holds for
l̄ = (0, 1, 0). For l̄ = (0, 0, 1) the principal part of the integral (438) coincides with the slow
time factor of the Fourier transform of the term

(2π )2d

�

∫ τ

0
Q̆�n,l̄(�ζ0k∗)

[
V (0)2

(
∂t V

(0)
ζ ′′′ + iζ ′′′

�
γ(ν)(−iβζ ′′′∇r)V (0)

ζ ′′′

)]
dτ1, ζ ′′′ = −ζ (441)

Hence the part of the FNLR of the ENLS corresponding to the terms in (114) with

δ1,ζ = 2Q̆�n,1,0,0(�ζ0k∗), δ2,ζ = Q̆�n,0,0,1(�ζ0k∗), ζ = ± (442)

coincides with the principal part of (438), here we use notation (393) where l̄ = (1, 0, 0) or
l̄ = (0, 0, 1).

9. Lattice nonlinear Schrödinger equation

We now show how the NLM can be approximated by a lattice NLS with the same precision
as by the classical NLS in the entire space. We consider for simplicity the case of real-valued
excitations and lower order approximations.

In the one-dimensional case the lattice NLSs replacing the NLSs (36) and (37) have the
form similar to (50), i.e.

∂t Zζ (m) = −iζ (γ0 + γ2)Zζ (m) − γ1

(
1

2
[Zζ (m + 1) − Zζ (m − 1)]

)
+ iζ

γ2

2
[Zζ (m + 1) + Zζ (m − 1)] + απ Qζ Z−ζ (m)Z2

ζ (m)

Zζ (m)|t=0 = hζ (βm), απ = 3α(2π )2, m = · · · − 1, 0, 1, 2, . . . , ζ = ± (443)

The equations do not involve the spatial derivatives and have the form of a sequence of ordinary
differential equations describing coupled nonlinear oscillators.

The approximation of the NLM by the NLS is based on: (i) the approximation of ωn0 (k∗+η)
by its Taylor polynomial γ(ν)(η) in (200); and (ii) the approximation of the modal susceptibility
Q̆�n0 (�ζ0k∗ + �η) defined by (179) by its Taylor polynomial p[σ ]

T,ζ (�η) (see (260)) in a vicinity of
ζk∗. Here we use trigonometric polynomials instead of algebraic and as a result we obtain
(443). Here we consider the case ν = 2, σ = 0, with the understanding that larger values of
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ν and σ can be considered similarly. Using an orthogonal change of variables η = Θξ we
reduce the quadratic form to the diagonal form ω′′

n0
(k∗) and obtain

γ(2)(Θξ) = γ0 +
∑

m

�1,mξm + 1

2

∑
m

�2,mξ 2
m (444)

where

ωn0 (k∗ + Θξ) = γ(2)(Θξ) + O(|ξ |3) (445)

Now we use trigonometric polynomials instead of algebraic ones. Obviously

ξm = sin ξm + O(|ξ |3) (446)

ξ 2
m = 2 − 2 cos ξm + O(|ξ |4) (447)

We set

�(2)(ξ) = �0 +
∑

m

�1,m sin ξm −
∑

m

�2,m cos ξm (448)

�0 = γ0 +
∑

m

�2,m (449)

which together with (444) yield

ωn0 (k∗ + Θξ) = �(2)(ξ) + O(|ξ |3) (450)

In particular, for d = 1

�(2)(η) = [ωn0 (k∗) + ω′′
n0

(k∗)] + ω′
n0

(k∗) sin η − ω′′
n0

(k∗) cos η

× ωn0 (k∗) + ω′
n0

(k∗)η + 1

2
ω′′

n0
(k∗)η2

= [ωn0 (k∗) + ω′′
n0

(k∗)] + ω′
n0

(k∗) sin η − ω′′
n0

(k∗) cos η + O(η3) (451)

An advantage of this representation compared with its algebraic counterpart is that it involves
a periodic function similar to ωn(k), namely

�(2)(ξ + 2πζ) = �(2)(ξ) (452)

Remark In the case ν ≥ 3 we can approximate functions ωn(k∗ + η) by sinl(η j ), l =
1, . . . , ν. Based on the Taylor polynomial

γ(ν)(η) =
ν∑

j=0

1

j!
ω( j)

n0
(k∗)(η j ), η = k − k∗ (453)

we form a trigonometric polynomial

�(ν)(η) =
ν∑

j=0

1

j!
�

( j)
(ν) (sin η) j (454)

where

η = (η1, . . . , ηd ), sin η = (sin η1, . . . , sin ηd ) (455)

The coefficients �
( j)
(ν) are uniquely determined by ω(i)

n0
(k∗), i = 0, . . . , j since the change of

variables sin ηl ↔ ηl is invertible about the origin. �
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9.1 Functions on a lattice and the discrete Fourier transform

We consider the lattice of vectors with integer components

m = (m1, m2, . . . , md ) ∈ Zd (456)

and functions Z (m) on the lattice Zd . The shift operators are defined as

∂̇+, j Z = Z (. . . , m j + 1, . . .), ∂̇−, j Z = Z (. . . , m j − 1, . . .) (457)

The elementary difference operators are then defined as

�̇+, j Z = 1

2
[Z (. . . , m j + 1, . . .) + Z (. . . , m j − 1, . . .)] = 1

2
[∂̇+, j Z + ∂̇−, j Z ]

�̇−, j Z = 1

2i
[Z (. . . , m j + 1, . . .) − Z (. . . , m j − 1, . . .)] = 1

2i
[∂̇+, j Z − ∂̇−, j Z ] (458)

For every lattice function Z (m) which decays at infinity fast enough we define its Fourier
transform

Z̄ (ξ) =
∑

m

Z (m)e−im·ξ (459)

with the inverse transform

Z (m) = 1

(2π )d

∫
[−π,π]d

eim·ξ Z̄ (ξ) dξ (460)

Obviously Z̄ (ξ) is a 2π -periodic function of ξ ∈Rd . The Fourier transform of the difference
operators �̇+,i Z is given by

[�̇+, j Z ](ξ) = cos ξ j Z̄ (k), [�̇−, j Z ](ξ) = sin ξ j Z̄ (ξ) (461)

When d = 1 we omit j and set

�̇+ Z = 1

2
[Z (m + 1) + Z (m − 1)], �̇− Z = 1

2i
[Z (m + 1) − Z (m − 1)] (462)

Note that the Fourier transform of the product is given by the following convolution formula

X Z (ξ) = 1

(2π )d

∫
[−π,π ]d

X (q)Z (ξ − q) dq (463)

as in the case of the continuous Fourier transform.

9.2 Lattice NLS (LNLS)

When �(2)(ξ) is given by (448), we define the difference operator on the lattice by the formula

�(2)(ζ ∇̇)Z = �0 Z + ζ
∑

m

�1,m�̇−,m Z −
∑

m

�2,m�̇+,m Z (464)

Note that its Fourier transform is

�(2)(ζ ∇̇)Z (ξ) = �(2)(ζξ)Z (ξ) (465)

Let us introduce a linear lattice Schrödinger equation (LLS)

∂t Z (m, t) = −i�(2)(∇̇)Z (m, t), Z (m, t)|t=0 = h(m), m ∈Zd (466)

It can be solved exactly in terms of its lattice Fourier transform (459), namely

Z̄ (ξ, t) = h̄(ξ) exp{−i�(2)(ξ)t} (467)
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Let us now introduce a lattice nonlinear Schrödinger equation (LNLS)

∂t Zζ = −iζ�(2)(ζ ∇̇)Zζ + απ Qζ Z−ζ Z2
ζ , Zζ (m, t)|t=0 = hβ,ζ (m) (468)

where Qζ is a complex constant and the factor απ = 3α(2π )2d is introduced for notational
consistency with the related NLM. Here

hβ,ζ (m) = hζ (βm), ζ = ± (469)

where hζ (r), r ∈Rd is a given smooth function of continuous argument. Its lattice Fourier
transform is given by

h̄β,ζ (ξ) =
∑

m

hζ (βm)e−im·ξ, ζ = ± (470)

with the inverse formula

hβ,ζ (m) = 1

(2π )d

∫
[−π,π ]d

eim·ξ h̄β,ζ (ξ) dξ (471)

Note that this formula makes sense even for non-integer values of m = r providing an inter-
polation to such values. We can replace in (58) Ẑζ based on a solution of the NLS by by Z ζ

based on the LNLS. Similarly to (59) we obtain that the modal coefficient Ũ+,n0 = Ũ+,n0 of
the solution of the NLM is well approximated in terms of the solution of the LNLS, namely

Ũζ,n0 (k∗ + �ξ, t) = Z̄ζ (ξ, t) + O(β) + O(�) (472)

Note that in the one-dimensional case Θξ = ξ. One can see that LNLS gives the same order
of accuracy as the NLS.

9.3 Presentation in spatial domain

Formula (356) takes the form

UZ (r, t) = βd

(2π)d

∫
[−π/β,π/β]d

�(βq)

[Z̄+(βq, t)G̃+,n0 (r, k∗ + βq) + Z̄−(βq, t)G̃−,n0 (r, −k∗ + βq)]dq (473)

According to (142)

G̃ζ,n0 (r, k) = Ĝζ,n0 (r, k)eik·r, ζ = ± (474)

where Ĝζ,n0 (r, k) is a 1-periodic function of r. Instead of (358) we have, similarly to (448),
expansion into trigonometric functions

Ĝζ,n0 (r, k∗ + βq) = ṗζ,g,σ (r, βq) + O(βσ+1), σ + 1 ≤ ν (475)

where, for σ = 2,

ṗζ,g,σ (r, βq) = [Ĝζ,n0 (r, k∗) + Ĝ′′
ζ,n0

(r, k∗)] + Ĝ′
ζ,n0

(r) sin(βq) − Ĝ′′
ζ,n0

(r) cos(βq) (476)

We obtain (355) where, similarly to (366)

UZζ
(m, t) = U0

Zζ
(m, t) + U1

Zζ
(m, t) + U2

Zζ
(m, t) + O(β3) (477)

where U0
Z+ is given by

U0
Zζ

(m, t) = eik∗·m[Ĝζ,n0 (m, k∗) + Ĝ′′
ζ,n0

(m, k∗)]Zζ (m, t) (478)
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and, similarly to (367),

U1
Zζ

(m, t) = eik∗·mĜ′
ζ,n0

(m, k∗) · �̇− Zζ (m, t) (479)

U2
Zζ

(m, t) = −eik∗·mĜ′′
ζ,n0

(m, k∗) · �̇+ Zζ (m, t) (480)

Note that using (471) we can interpolate UZ± (m, t) to non-integer m = r.

9.4 Comparison of the lattice NLS with the NLS

The LNLS approximation, compared with the classical NLS has the following properties.

� The accuracy of approximation by the lattice NLS (468) is the same as by the NLS (100).
� The right-hand side of (468) is a bounded operator, which is an advantage over the NLS.
� The lattice system (468) is already in a spatially discretized form, which can be advantageous

for numerical simulations.
� The form of LNLS (468) suggests that small-scale (compared with the cell size) features

of the wave dynamics are effectively eliminated. Note that the derivation of the NLS also
assumes the elimination of the small-scale, but the differential form of the NLS still allows
small-scale perturbations to be of importance for large-scale wave dynamics.

There is extensive literature on coupled nonlinear oscillators on lattices, see for example
[46] and [47] and references therein. For photonic crystals such equations were used in [48].

Remark In the case when we use (454) the difference differential equation (468) takes the
form

∂t Z = −i�(2)(�̇−)Z + απ Q+|Z |2 Z , Z (m, t)|t=0 = hβ(m) (481)

where the operator �(2)(�̇−) is obtained by substituting �̇−, j in place of sin η j in the polyno-
mial (454). �

Remark Note that usually the terms with operators �̇−,m are not involved in the lattice
Schrödinger equations considered in the literature. The reason is that the influence of these
terms on solutions with the initial data h(βm) forβ � 1 can be taken into account by choosing a
coordinate frame moving with the group velocity. To give a simple explanation, we use another
approximation for ωn0 (ζk∗ + Θξ), namely

ωn0 (ζk∗ + Θξ) = �(2)(ξ) = �0 +
∑

m

�1,mξm −
∑

m

�2,m cos ξm + O(|ξ |3) (482)

which combines linear functions with trigonometric. The corresponding difference differential
equation in Rd has the form

∂t Z (x, t) = −i�0 Z (x, t) +
∑

m

�1,m
∂

∂xm
Z (x, t) + i

∑
m

�2,m�̇+,m Z (x, t)

+απ Q+|Z |2 Z (x, t), x ∈ Rd (483)

involving both differential and finite difference operators. The standard change of variables

Z (x, t) = z((x+�t, t)), � = (�1,1, . . . , �1,d ) (484)

reduces this equation to the following NLS difference equation

∂t z(x, t) = −i�0z(x, t) + i
∑

m

�2,m�̇+,m z(x, t) + απ Q+|z|2z(x, t) (485)
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Obviously this equation is equivalent to a family of independent equations on the lattice Zd

of the same form as (468) but without the terms �̇−,m . �

10. Conclusions

The basic conditions on a periodic dielectric medium to support nonlinear Schrödinger regimes
of electromagnetic wave propagation are: (i) the inversion symmetry ωn(−k) = ωn(k) of
the dispersion relations; and (ii) the leading term in the nonlinearity is cubic. Nonlinear
Schrödinger regimes are generated by almost time-harmonic excitation currents with localized
quasimomenta and their most essential properties are as follows.

� The asymptotic nature of nonlinear Schrödinger regimes is determined by three small pa-
rameters α, �, β. The parameter α scales the magnitude of the nonlinearity; it is proportional
to the square of the amplitude of the excitation. The parameter 1/� is proportional to time
extension of the initial current excitation. The parameter β describes the range of quasi-
momenta k about a fixed k∗ in the modal composition of the excitation current. The NLS
regimes arise when α ∼ � and

α ∼ � and � ∼ βκ1 , for some κ1 > 0

In particular, the classical nonlinear Schrödinger regime is characterized by the following
relations between the three small parameters

α ∼ � ∼ β2

� The NLS and their extended versions describe approximately the evolution of the Floquet–
Bloch modal coefficients Ũ±,n0 (k∗ + η, t) of the propagating wave.

� Multimodal excitation currents about several k∗, j generate nonlinear Schrödinger regimes
that satisfy the principle of approximate superposition, that is with a very high accuracy
O(β∞) the modal components about different k∗, j evolve essentially independently accord-
ing to NLSs or ENLSs.

� Higher accuracy approximations for longer time intervals are achieved by the analysis of
the modal decomposition of the wave.

The accuracy of the NLS/ENLS approximation by developed methods can be characterized
as follows.

� The classical NLS gives an approximation with error O(β) over the time interval O(1/β2).
� To improve the accuracy to O(β2) over the time interval O(1/β2) it is sufficient to take

into account the frequency dependence of the susceptibility tensor (in terms of first-order
derivatives with respect to k of the tensor at k = k∗) and the third-order derivatives of the
dispersion relation ωn0 (k) at k = k∗, leading to the third-order ENLS (see (109)).

� To improve the accuracy further to O(β3) over the time interval O(1/β2) the following
characteristics of the media have to be taken into account: (i) fourth-order derivatives of
the dispersion relation ωn0 (k) at k = k∗; (ii) second-order derivatives of the susceptibility
tensor at k = k∗; (iii) nonlinear interactions between the forward- and backward-propagating
waves; (iv) finer effects of the susceptibility approximation expressed in terms of the first-
order frequency derivatives of the susceptibility; (v) fifth-order terms in the nonlinearity;
(vi) nonlinear interactions between different spectral bands. The above effects are taken into
account in the fourth-order ENLS (see section 1.4.3).

� The lattice NLS provides the same accuracy of approximation as the classical NLS with
evident advantages for numerically efficient analysis.
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